scholarly journals Aquaculture Farming Effect on Benthic Respiration and Nutrient Flux in Semi-Enclosed Coastal Waters of Korea

2021 ◽  
Vol 9 (5) ◽  
pp. 554
Author(s):  
Sung-Han Kim ◽  
Jae-Seong Lee ◽  
Kyung-Tae Kim ◽  
Hyung-Chul Kim ◽  
Won-Chan Lee ◽  
...  

Sediment oxygen demand (SOD) and benthic nutrient fluxes (BNFs) were measured using an in situ benthic chamber at a fish farm (FF), oyster farm (OF), and controls (FF-C and OF-C) to assess the impact of aquaculture activities on organic carbon (OC) and nutrients cycles in coastal waters of Korea. The SOD at FF and OF ranged from 60 ± 2 to 157 ± 3 mmol m−2 d−1 and from 77 ± 14 to 84 ± 16 mmol m−2 d−1, respectively, more than five times those of the control sites. The SOD at farm sites is highly correlated with fish stock and food input, suggesting that excess feed input is an important control factor for OC remineralization. The combined analysis of sediment trap and SOD indicates that most of the deposited OC oxidized in the sediment and/or was laterally transported by the current before being buried in the sediment. The benthic nutrient fluxes at farms ranged from 5.45 to 8.95 mmol N m−2 d−1 for nitrogen and from 0.51 to 1.67 mmol P m−2 d−1 for phosphate, respectively, accounting for 37–270% and 52–804% of the N and P required for primary production in the water column. These results indicate that aquaculture farming may profoundly impact biogeochemical cycles in coastal waters.

1998 ◽  
Vol 38 (10) ◽  
pp. 23-30
Author(s):  
Sarah Jubb ◽  
Philip Hulme ◽  
Ian Guymer ◽  
John Martin

This paper describes a preliminary investigation that identified factors important in the prediction of river water quality, especially regarding dissolved oxygen (DO) concentration. Intermittent discharges from combined sewer overflows (CSOs) within the sewerage, and overflows at water reclamation works (WRW) cause dynamic conditions with respect to both river hydraulics and water quality. The impact of such discharges has been investigated under both wet and dry weather flow conditions. Data collected from the River Maun, UK, has shown that an immediate, transient oxygen demand exists downstream of an outfall during storm conditions. The presence of a delayed oxygen demand has also been identified. With regard to modelling, initial investigations used a simplified channel and the Streeter-Phelps (1925) dissolved oxygen sag curve equation. Later, a model taking into account hydrodynamic, transport and dispersion processes was used. This suggested that processes other than water phase degradation of organic matter significantly affect the dissolved oxygen concentration downstream of the location of an intermittent discharge. It is proposed that the dynamic rate of reaeration and the sediment oxygen demand should be the focus of further investigation.


1997 ◽  
Vol 48 (5) ◽  
pp. 445 ◽  
Author(s):  
A. I. Robertson ◽  
M. R. Healey ◽  
A. J. King

Two billabongs on the floodplain of the Murrumbidgee River, Australia, were partitioned in half with impermeable plastic barriers and the biomass of carp was manipulated to establish high- and low-carp biomass treatments in each billabong. Measurements of benthic variables (rates of particle settlement, biofilm development, sediment respiration, macrophyte detritus decomposition, sediment solid-phase nutrient concentrations and benthic algal biomass) were performed over four months from summer to winter 1995. Rates of particle settlement were greater in the high-carp treatment of each billabong throughout the experiment. High carp biomass had a negative impact on the autotrophic component of the biofilm developing on wood blocks placed at different heights above the sediment surface but the mechanism responsible differed between billabongs. Sediment oxygen demand became greater in the presence of a higher biomass of carp during the experiment but time courses differed between billabongs. Manipulations of carp biomass did not influence algal biomass on the sediment surface, the rate of decomposition of macrophyte detritus or sediment solid-phase nutrients or nutrient ratios. The impact of carp on benthic and surficial processes was significant but the mechanisms of change differed between billabongs.


2016 ◽  
Author(s):  
Olivier Aumont ◽  
Marco van Hulten ◽  
Matthieu Roy-Barman ◽  
Jean-Claude Dutay ◽  
Christian Ethé ◽  
...  

Abstract. The marine biological carbon pump is dominated by the vertical transfer of Particulate Organic Carbon (POC) from the surface ocean to its interior. The efficiency of this transfer plays an important role in controlling the amount of atmospheric carbon that is sequestered in the ocean. Furthermore, the abundance and composition of POC is critical for the removal of numerous trace elements by scavenging, a number of which such as iron are essential for the growth of marine organisms, including phytoplankton. Observations and laboratory experiments have shown that POC is composed of numerous organic compounds that can have very different reactivities. Yet, this variable reactivity of POC has never been extensively considered, especially in modeling studies. Here, we introduced in the global ocean biogeochemical model NEMO-PISCES a description of the variable composition of POC based on the theoretical Reactivity Continuum Model proposed by (Boudreau and Ruddick, 1991). Our model experiments show that accounting for a variable lability of POC increases POC concentrations in the ocean’s interior by one to two orders of magnitude. This increase is mainly the consequence of a better preservation of small particles that sink slowly from the surface. Comparison with observations is significantly improved both in abundance and in size distribution. Furthermore, the amount of carbon that reaches the sediments is increased by more than a factor of two, which is in better agreement with global estimates of the sediment oxygen demand. The impact on the major macro-nutrients (nitrate and phosphate) remains modest. However, iron (Fe) distribution is strongly altered, especially in the upper mesopelagic zone as a result of more intense scavenging: Vertical gradients in Fe are milder in the upper ocean which appears to be closer to observations. Thus, our study shows that the variable lability of POC can play a critical role in the marine biogeochemical cycles which advocates for more dedicated in situ and laboratory experiments.


1984 ◽  
Vol 11 (3) ◽  
pp. 459-473
Author(s):  
T. P. Halappa Gowda ◽  
R. J. Dewey

The Thames River water management study report, prepared in 1975 by the Ontario Ministries of Natural Resources and Environment, recommended the construction of the Glengowan Dam primarily for flow augmentation to improve the river water quality (Recommendation No. 1). As part of the environmental impact assessment of the proposed dam, detailed water quality prediction studies were carried out using deterministic and stochastic models to evaluate the impact of the proposed flow augmentation and wastewater loading options. The river receives treated wastewater effluents from five water pollution control plants (WPCP) in the study area, all located within the City of London. The processes simulated by the models include advection, decay of carbonaceous and nitrogenous oxygen demand (CBOD and NOD), sediment oxygen demand, atmospheric reaeration, and respiration and photosynthetic activity of aquatic macrophyte community. The options modelled include (a) projected CBOD and NOD loading rates from the five WPCP's for the planning period 1981–2001; (b) low flows attainable with augmentation from existing Fanshawe reservoir and the proposed Glengowan Dam; and (c) zero loadings to the Thames River from WPCP's, attainable with effluent bypassing to Lake Erie. The results of the modelling studies are presented in this paper. Key words: water quality, dissolved oxygen, flow augmentation, environmental assessment, Glengowan Dam, Thames River Basin, deterministic model, stochastic model.


2017 ◽  
Vol 14 (9) ◽  
pp. 2321-2341 ◽  
Author(s):  
Olivier Aumont ◽  
Marco van Hulten ◽  
Matthieu Roy-Barman ◽  
Jean-Claude Dutay ◽  
Christian Éthé ◽  
...  

Abstract. The marine biological carbon pump is dominated by the vertical transfer of particulate organic carbon (POC) from the surface ocean to its interior. The efficiency of this transfer plays an important role in controlling the amount of atmospheric carbon that is sequestered in the ocean. Furthermore, the abundance and composition of POC is critical for the removal of numerous trace elements by scavenging, a number of which, such as iron, are essential for the growth of marine organisms, including phytoplankton. Observations and laboratory experiments have shown that POC is composed of numerous organic compounds that can have very different reactivities. However, this variable reactivity of POC has never been extensively considered, especially in modelling studies. Here, we introduced in the global ocean biogeochemical model NEMO-PISCES a description of the variable composition of POC based on the theoretical reactivity continuum model proposed by Boudreau and Ruddick (1991). Our model experiments show that accounting for a variable lability of POC increases POC concentrations in the ocean's interior by 1 to 2 orders of magnitude. This increase is mainly the consequence of a better preservation of small particles that sink slowly from the surface. Comparison with observations is significantly improved both in abundance and in size distribution. Furthermore, the amount of carbon that reaches the sediments is increased by more than a factor of 2, which is in better agreement with global estimates of the sediment oxygen demand. The impact on the major macronutrients (nitrate and phosphate) remains modest. However, iron (Fe) distribution is strongly altered, especially in the upper mesopelagic zone as a result of more intense scavenging: vertical gradients in Fe are milder in the upper ocean, which appears to be closer to observations. Thus, our study shows that the variable lability of POC can play a critical role in the marine biogeochemical cycles which advocates for more dedicated in situ and laboratory experiments.


2017 ◽  
Vol 81 (4) ◽  
pp. 431 ◽  
Author(s):  
Enis Hrustić ◽  
Svjetlana Bobanović-Ćolić

In this study, we explored the impact of eutrophication and stratification on hypoxia in deep waters of moderately warm Croatian marine lakes. Although the Mljet Lakes (MLs) are predominantly oligotrophic, mesotrophic conditions are present at depths below 20 m in the Small Lake (SL) and below 30 m in the Big Lake (BL), along with higher apparent oxygen utilization (AOU). Hypoxia at depths ≥ 25 m in SL and and ≥ 40 m in BL was observed between October 2009 and January 2010, and in SL in summer (July and September 2010). Significant differences (p < 0.05) in several physical, biological and chemical parameters were detected between the lakes, while AOU, derived oxygen utilization rate (OUR) and organic carbon remineralization rate (OCRR) were not significantly different (p >0.05) between the lakes. An intense and persistent pycnocline throughout the year, comparatively high water temperature, extended water renewal time and summer phytoplankton bloom were identified as physical and biological parameters which might have significantly contributed to increased frequency of hypoxic events in a shallow SL. Significantly (p < 0.05) higher ammonium concentration in SL, especially in its deep water, seems to be a long-term chemical feature related to the poor ventilation and higher sediment oxygen demand. At the current level of eutrophication and the present climate change trends, the MLs and similar systems may experience more persistent and intense stratification, which could further prevent mixing between upper and deep waters, likely leading to increasing duration of hypoxia and its negative impacts on the biodiversity of benthic communities.


Sign in / Sign up

Export Citation Format

Share Document