scholarly journals Surface Water Quality Differs between Functionally Similar Restored and Natural Wetlands of the Saint Lawrence River Valley in New York

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 676
Author(s):  
Brendan Carberry ◽  
Tom A. Langen ◽  
Michael R. Twiss

We tested the hypothesis that upland wetland restorations provide the same quality of wetland, in terms of ecosystem services and biodiversity, as natural wetlands in the St. Lawrence River Valley. Water quality (pH, alkalinity, colored dissolved organic matter, phytoplankton community composition, chlorophyll-a, fecal coliform, total phosphorus, dissolved nitrate, turbidity, specific conductivity) in 17 natural and 45 restored wetlands was compared to determine whether wetland restoration provided similar physicochemical conditions as natural wetlands in the Saint Lawrence River Valley of northeastern New York State. Natural wetlands were more acidic, which was hypothesized to result from the avoidance of naturally acidic regions by farmers seeking to drain wetlands for crop and pasture use. Natural wetlands had significantly greater fecal coliform concentrations. Restored wetlands had significantly greater specific conductivity and related ions, and this is attributed to the creation of wetlands upon marine clay deposits. Other water quality indicators did not differ between restored and natural wetlands. These findings confirm other research at these same wetlands showing no substantial differences between restored and natural wetlands in major biotic indicators. Thus, we conclude that wetland restoration does result in wetlands that are functionally the same as the natural wetlands they were designed to replicate.

2010 ◽  
Vol 10 (3) ◽  
pp. 727-733 ◽  
Author(s):  
Christopher P. Tran ◽  
Robert W. Bode ◽  
Alexander J. Smith ◽  
Gary S. Kleppel

2014 ◽  
Vol 80 (16) ◽  
pp. 4814-4820 ◽  
Author(s):  
Lisa A. Jones ◽  
Randy W. Worobo ◽  
Christine D. Smart

ABSTRACTIn the United States, surface water is commonly used to irrigate a variety of produce crops and can harbor pathogens responsible for food-borne illnesses and plant diseases. Understanding when pathogens infest water sources is valuable information for produce growers to improve the food safety and production of these crops. In this study, prevalence data along with regression tree analyses were used to correlate water quality parameters (pH, temperature, turbidity), irrigation site properties (source, the presence of livestock or fowl nearby), and precipitation data to the presence and concentrations ofEscherichia coli,Salmonellaspp., and hymexazol-insensitive (HIS) oomycetes (PhytophthoraandPythiumspp.) in New York State surface waters. A total of 123 samples from 18 sites across New York State were tested forE. coliandSalmonellaspp., of which 33% and 43% were positive, respectively. Additionally, 210 samples from 38 sites were tested for HIS oomycetes, and 88% were found to be positive, with 10 species ofPhytophthoraand 11 species ofPythiumbeing identified from the samples. Regression analysis found no strong correlations between water quality parameters, site factors, or precipitation to the presence or concentration ofE. coliin irrigation sources. ForSalmonella, precipitation (≤0.64 cm) 3 days before sampling was correlated to both presence and the highest counts. Analyses for oomycetes found creeks to have higher average counts than ponds, and higher turbidity levels were associated with higher oomycete counts. Overall, information gathered from this study can be used to better understand the food safety and plant pathogen risks of using surface water for irrigation.


River Systems ◽  
2010 ◽  
Vol 19 (1) ◽  
pp. 75-94 ◽  
Author(s):  
Steven W. Effler ◽  
Anthony R. Prestigiacomo ◽  
Adam J.P. Effler ◽  
Charles Driscoll

2020 ◽  
Author(s):  
Christopher W. Sinton ◽  
◽  
Matthew Olivieri ◽  
Tara Perry ◽  
Katherine Stoddard

2009 ◽  
Vol 6 (1) ◽  
pp. 589-625 ◽  
Author(s):  
T. T. Eaton ◽  
C. Yi

Abstract. Conventional methods of estimating water quality improvement due to wetland treatment are not well suited to the dynamic water level and wetted area fluctuations observed in coastal settings. We present a new method to quantify hydroperiod and hydraulic loading at different elevations in a coastal wetland profile in which the principal inflows and outflows are due to tides. We apply our method to an urban coastal setting (part of the New York-New Jersey Harbor Estuary) where a major water quality problem persists due to fecal coliform contamination from combined sewer overflow (CSO) discharges. Based on three types of simplified hydrograph, we show how such an approach and conceptual model of a terraced tidal wetland with constant mean slope can be used to assess hydrologic constraints for wetland vegetation species and the potential treatment effectiveness for adjacent impaired coastal waters. Resulting hydroperiods and hydraulic loading values decrease approximately exponentially with elevation along the wetland profile with considerable variation in overall slope depending on the hydrograph pattern. Application of a first-order contamination reduction model using our calculated hydraulic loadings indicates that such tidal treatment wetlands could reduce average fecal coliform concentrations in the range of 27% to 94% depending on the pattern of water level fluctuation, wetland surface elevation and vegetation density. Our analysis shows the performance potential for tidal wetlands to treat adjacent coastal waters. Restoration of existing salt marshes, and construction of new tidal wetlands would therefore be a promising part of an ecohydrologic strategy to improve water quality in contaminated urban coastal settings like the New York-New Jersey Harbor Estuary.


Sign in / Sign up

Export Citation Format

Share Document