tidal wetlands
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 43)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
James R. Holmquist ◽  
Lisamarie Windham-Myers

AbstractTidal wetlands provide myriad ecosystem services across local to global scales. With their uncertain vulnerability or resilience to rising sea levels, there is a need for mapping flooding drivers and vulnerability proxies for these ecosystems at a national scale. However, tidal wetlands in the conterminous USA are diverse with differing elevation gradients, and tidal amplitudes, making broad geographic comparisons difficult. To address this, a national-scale map of relative tidal elevation (Z*MHW), a physical metric that normalizes elevation to tidal amplitude at mean high water (MHW), was constructed for the first time at 30 × 30-m resolution spanning the conterminous USA. Contrary to two study hypotheses, watershed-level median Z*MHW and its variability generally increased from north to south as a function of tidal amplitude and relative sea-level rise. These trends were also observed in a reanalysis of ground elevation data from the Pacific Coast by Janousek et al. (Estuaries and Coasts 42 (1): 85–98, 2019). Supporting a third hypothesis, propagated uncertainty in Z*MHW increased from north to south as light detection and ranging (LiDAR) errors had an outsized effect under narrowing tidal amplitudes. The drivers of Z*MHW and its variability are difficult to determine because several potential causal variables are correlated with latitude, but future studies could investigate highest astronomical tide and diurnal high tide inequality as drivers of median Z*MHW and Z*MHW variability, respectively. Watersheds of the Gulf Coast often had propagated Z*MHW uncertainty greater than the tidal amplitude itself emphasizing the diminished practicality of applying Z*MHW as a flooding proxy to microtidal wetlands. Future studies could focus on validating and improving these physical map products and using them for synoptic modeling of tidal wetland carbon dynamics and sea-level rise vulnerability analyses.


Wetlands ◽  
2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Yini Wang ◽  
Mingliang Zhang

2021 ◽  
Author(s):  
Maxwell Boyle ◽  
Elizabeth Rico

The Southeast Coast Network (SECN) conducts long-term terrestrial vegetation monitoring as part of the nationwide Inventory and Monitoring Program of the National Park Service (NPS). The vegetation community vital sign is one of the primary-tier resources identified by SECN park managers, and monitoring is currently conducted at 15 network parks (DeVivo et al. 2008). Monitoring plants and their associated communities over time allows for targeted understanding of ecosystems within the SECN geography, which provides managers information about the degree of change within their parks’ natural vegetation. 2019 marks the first year of conducting this monitoring effort on four SECN parks, including Fort Pulaski National Monument (FOPU). Twelve vegetation plots were established at Fort Pulaski National Monument in August. Data collected in each plot included species richness across multiple spatial scales, species-specific cover and constancy, species-specific woody stem seedling/sapling counts and adult tree (greater than 10 centimeters [3.9 inches {in}]) diameter at breast height (DBH), overall tree health, landform, soil, observed disturbance, and woody biomass (i.e., fuel load) estimates. This report summarizes the baseline (year 1) terrestrial vegetation data collected at Fort Pulaski National Monument in 2019. Data were stratified across two dominant broadly defined habitats within the park (Maritime Tidal Wetlands and Maritime Upland Forests and Shrublands). Noteworthy findings include: Sixty-six vascular plant taxa were observed across 12 vegetation plots, including six taxa not previously known from the park. Plots were located on both Cockspur and McQueen’s Island. The most frequently encountered species in each broadly defined habitat included: Maritime Tidal Wetlands: smooth cordgrass (Spartina alterniflora), perennial saltmarsh aster(Symphyotrichum enuifolium), and groundsel tree (Baccharis halimifolia) Maritime Upland Forests and Shrublands: yaupon (Ilex vomitoria), southern/eastern red cedar (Juniperus silicicola + virginiana), and cabbage palmetto (Sabal palmetto). Four non-native species identified as invasive by the Georgia Exotic Pest Plant Council (GA-EPPC 2018) were found during this monitoring effort. These species (and their overall frequency of occurrence within all plots) included: Japanese honeysuckle (Lonicera japonica; 17%), bahiagrass (Paspalum notatum; 8%), Vasey’s grass (Paspalum urvillei; 8%), and European common reed (Phragmites australis; 8%). Two rare plants tracked by the Georgia Department of Natural Resources (GADNR 2013) were found during this monitoring effort. These include Florida wild privet (Forestiera segregata) and Bosc’s bluet (Oldenlandia boscii). Southern/eastern red cedar and cabbage palmetto were the most dominant species within the tree stratum of the maritime Upland Forest and Shrubland habitat type. Species that dominated the sapling and seedling strata of this type included yaupon, cabbage palmetto, groundsel tree, and Carolina laurel cherry (Prunus caroliniana). The health status of sugarberry (Celtis laevigata)—a typical canopy species in maritime forests of the South Atlantic Coastal Plain--observed on park plots appeared to be in decline, with most stems experiencing elevated levels of dieback and low vigor. Over the past decade, this species has been experiencing unexplained high rates of dieback and mortality throughout its range in the Southeastern United States; current research is focusing on what may be causing these alarming die-off patterns. Duff and litter made up the majority of downed woody biomass (fuel loads) across FOPU vegetation plots.


2021 ◽  
Vol 1 ◽  
Author(s):  
Bergit Uhran ◽  
Lisamarie Windham-Myers ◽  
Norman Bliss ◽  
Amanda M. Nahlik ◽  
Eric Sundquist ◽  
...  

Wetland soil stocks are important global repositories of carbon (C) but are difficult to quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal discontinuity. Merging scales of soil-survey spatial extents with wetland-specific point-based data offers an explicit, empirical and updatable improvement for regional and continental scale soil C stock assessments. Agency-collected and community-contributed soil datasets were compared for representativeness and bias, with the goal of producing a harmonized national map of wetland soil C stocks with error quantification for wetland areas of the conterminous United States (CONUS) identified by the USGS National Landcover Change Dataset. This allowed an empirical predictive model of SOC density to be applied across the entire CONUS using relational %OC distribution alone. A broken-stick quantile-regression model identified %OC with its relatively high analytical confidence as a key predictor of SOC density in soil segments; soils <6% OC (hereafter, mineral wetland soils, 85% of the dataset) had a strong linear relationship of %OC to SOC density (RMSE = 0.0059, ~4% mean RMSE) and soils >6% OC (organic wetland soils, 15% of the dataset) had virtually no predictive relationship of %OC to SOC density (RMSE = 0.0348 g C cm−3, ~56% mean RMSE). Disaggregation by vegetation type or region did not alter the breakpoint significantly (6% OC) and did not improve model accuracies for inland and tidal wetlands. Similarly, SOC stocks in tidal wetlands were related to %OC, but without a mappable product for disaggregation to improve accuracy by soil class, region or depth. Our layered harmonized CONUS wetland soil maps revised wetland SOC stock estimates downward by 24% (9.5 vs. 12.5Pg C) with the overestimation being entirely an issue of inland organic wetland soils (35% lower than SSURGO-derived SOC stocks). Further, SSURGO underestimated soil carbon stocks at depth, as modeled wetland SOC stocks for organic-rich soils showed significant preservation downcore in the NWCA dataset (<3% loss between 0 and 30 cm and 30 and 100 cm depths) in contrast to mineral-rich soils (37% downcore stock loss). Future CONUS wetland soil C assessments will benefit from focused attention on improved organic wetland soil measurements, land history, and spatial representativeness.


2021 ◽  
Vol 13 (18) ◽  
pp. 3589
Author(s):  
Gwen Joelle Miller ◽  
Iryna Dronova ◽  
Patricia Y. Oikawa ◽  
Sara Helen Knox ◽  
Lisamarie Windham-Myers ◽  
...  

While growth history of vegetation within upland systems is well studied, plant phenology within coastal tidal systems is less understood. Landscape-scale, satellite-derived indicators of plant greenness may not adequately represent seasonality of vegetation biomass and productivity within tidal wetlands due to limitations of cloud cover, satellite temporal frequency, and attenuation of plant signals by tidal flooding. However, understanding plant phenology is necessary to gain insight into aboveground biomass, photosynthetic activity, and carbon sequestration. In this study, we use a modeling approach to estimate plant greenness throughout a year in tidal wetlands located within the San Francisco Bay Area, USA. We used variables such as EVI history, temperature, and elevation to predict plant greenness on a 14-day timestep. We found this approach accurately estimated plant greenness, with larger error observed within more dynamic restored wetlands, particularly at early post-restoration stages. We also found modeled EVI can be used as an input variable into greenhouse gas models, allowing for an estimate of carbon sequestration and gross primary production. Our strategy can be further developed in future research by assessing restoration and management effects on wetland phenological dynamics and through incorporating the entire Sentinel-2 time series once it becomes available within Google Earth Engine.


2021 ◽  
Vol 9 ◽  
Author(s):  
Stacy Sherman ◽  
Rosemary Hartman

Just like people, fish need a safe place to find food and grow up. For fish that travel between fresh water and the ocean, tidal wetlands are a perfect neighborhood, with lots of habitat and food. Tidal wetlands are areas of shallow water where tides from the ocean cover the land with water every day. Besides providing a home for fish and water-loving plants, tidal wetlands also help protect people and their property from natural disasters like storms, and from sea-level rise. People have not always understood the value of wetlands, so billions of acres of them have been filled to farm or build on. In the San Francisco Estuary, more than 90% of wetlands were converted to other uses in <150 years! People now understand why wetlands are important, so protecting and restoring wetlands is a top priority.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253554
Author(s):  
Andrew S. From ◽  
Ken W. Krauss ◽  
Gregory B. Noe ◽  
Nicole Cormier ◽  
Camille L. Stagg ◽  
...  

Wetlands along upper estuaries are characterized by dynamic transitions between forested and herbaceous communities (marsh) as salinity, hydroperiod, and nutrients change. The importance of belowground net primary productivity (BNPP) associated with fine and coarse root growth also changes but remains the dominant component of overall productivity in these important blue carbon wetlands. Appropriate BNPP assessment techniques to use in various tidal wetlands are not well-defined, and could make a difference in BNPP estimation. We hypothesized that different BNPP techniques applied among tidal wetlands differ in estimation of BNPP and possibly also correlate differently with porewater nutrient concentrations. We compare 6-month and 12-month root ingrowth, serial soil coring techniques utilizing two different calculations, and a mass balance approach (TBCA, Total Belowground Carbon Allocation) among four tidal wetland types along each of two river systems transitioning from freshwater forest to marsh. Median values of BNPP were 266 to 2946 g/m2/year among all techniques used, with lower BNPP estimation from root ingrowth cores and TBCA (266–416 g/m2/year), and higher BNPP estimation from serial coring of standing crop root biomass (using Smalley and Max-Min calculation methods) (2336–2946 g/m2/year). Root turnover (or longevity) to a soil depth of 30 cm was 2.2/year (1.3 years), 2.7/year (1.1 years), 4.5/year (0.9 years), and 1.2/year (2.6 years), respectively, for Upper Forest, Middle Forest, Lower Forest, and Marsh. Marsh had greater root biomass and BNPP, with slower root turnover (greater root longevity) versus forested wetlands. Soil porewater concentrations of NH3 and reactive phosphorus stimulated BNPP in the marsh when assessed with short-deployment BNPP techniques, indicating that pulses of mineralized nutrients may stimulate BNPP to facilitate marsh replacement of forested wetlands. Overall, ingrowth techniques appeared to represent forested wetland BNPP adequately, while serial coring may be necessary to represent herbaceous plant BNPP from rhizomes as marshes replace forested wetlands.


2021 ◽  
Vol 9 (7) ◽  
pp. 751
Author(s):  
Jenny R. Allen ◽  
Jeffrey C. Cornwell ◽  
Andrew H. Baldwin

Persistence of tidal wetlands under conditions of sea level rise depends on vertical accretion of organic and inorganic matter, which vary in their relative abundance across estuarine gradients. We examined the relative contribution of organic and inorganic matter to vertical soil accretion using lead-210 (210Pb) dating of soil cores collected in tidal wetlands spanning a tidal freshwater to brackish gradient across a Chesapeake Bay subestuary. Only 8 out of the 15 subsites had accretion rates higher than relative sea level rise for the area, with the lowest rates of accretion found in oligohaline marshes in the middle of the subestuary. The mass accumulation of organic and inorganic matter was similar and related (R2 = 0.37). However, owing to its lower density, organic matter contributed 1.5–3 times more toward vertical accretion than inorganic matter. Furthermore, water/porespace associated with organic matter accounted for 82%–94% of the total vertical accretion. These findings demonstrate the key role of organic matter in the persistence of coastal wetlands with low mineral sediment supply, particularly mid-estuary oligohaline marshes.


2021 ◽  
pp. 117446
Author(s):  
Manping Zhang ◽  
Zi-Jing Wang ◽  
Jung-Chen Huang ◽  
Shanshan Sun ◽  
Xijun Cui ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2495
Author(s):  
Brian T. Lamb ◽  
Maria A. Tzortziou ◽  
Kyle C. McDonald

Tidal wetlands are critically important ecosystems that provide ecosystem services including carbon sequestration, storm surge mitigation, water filtration, and wildlife habitat provision while supporting high levels of biodiversity. Despite their importance, monitoring these systems over large scales remains challenging due to difficulties in obtaining extensive up-to-date ground surveys and the need for high spatial and temporal resolution satellite imagery for effective space-borne monitoring. In this study, we developed methodologies to advance the monitoring of tidal marshes and adjacent deepwaters in the Mid-Atlantic and Gulf Coast United States. We combined Sentinel-1 SAR and Landsat 8 optical imagery to classify marshes and open water in both regions, with user’s and producer’s accuracies exceeding 89%. This methodology enables the assessment of marsh loss through conversion to open water at an annual resolution. We used time-series Sentinel-1 imagery to classify persistent and non-persistent marsh vegetation with greater than 93% accuracy. Non-persistent marsh vegetation serves as an indicator of salinity regimes in tidal wetlands. Additionally, we mapped two invasive species: wetlands invasive Phragmites australis (common reed) with greater than 80% accuracy and deepwater invasive Trapa natans (water chestnut) with greater than 96% accuracy. These results have important implications for improved monitoring and management of coastal wetlands ecosystems.


Sign in / Sign up

Export Citation Format

Share Document