restored wetlands
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 24)

H-INDEX

24
(FIVE YEARS 3)

CATENA ◽  
2022 ◽  
Vol 209 ◽  
pp. 105846
Author(s):  
Yingxin Li ◽  
Lixia Wang ◽  
Shaoqing Zhang ◽  
Lei Tian ◽  
Yang Ou ◽  
...  

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 148
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Jinglie Zhou ◽  
Susanna Theroux ◽  
Susannah G. Tringe

Aerobic bacteria that degrade methylphosphonates and produce methane as a byproduct have emerged as key players in marine carbon and phosphorus cycles. Here, we present two new draft genome sequences of the genus Marivita that were assembled from metagenomes from hypersaline former industrial salterns and compare them to five other Marivita reference genomes. Phylogenetic analyses suggest that both of these metagenome-assembled genomes (MAGs) represent new species in the genus. Average nucleotide identities to the closest taxon were <85%. The MAGs were assembled with SPAdes, binned with MetaBAT, and curated with scaffold extension and reassembly. Both genomes contained the phnCDEGHIJLMP suite of genes encoding the full C-P lyase pathway of methylphosphonate degradation and were significantly more abundant in two former industrial salterns than in nearby reference and restored wetlands, which have lower salinity levels and lower methane emissions than the salterns. These organisms contain a variety of compatible solute biosynthesis and transporter genes to cope with high salinity levels but harbor only slightly acidic proteomes (mean isoelectric point of 6.48).


2021 ◽  
Author(s):  
Edward B. Farley ◽  
Michael L. Schummer ◽  
Donald J. Leopold ◽  
John M. Coluccy ◽  
Douglas C. Tozer

2021 ◽  
Author(s):  
◽  
Shannon Bentley

<p>Extensive global and national wetland loss has reduced ecosystem services to people and undermines the sustainability of ecosystems. Restoration projects aim to regain the biophysical conditions of remnant wetlands that produce an abundance of ecosystem services. Ecological restoration practices manipulate community succession to enhance ecological functions, and these different successional stages may be reflected in the soil physio-chemical characteristics, plants, and soil microbes, which in turn produce a variety of ecosystem services. Considerable potential for wetland restoration on private property exists in New Zealand, but it remains unknown how successful restoration is when undertaken through a landholder’s own prerogative. Relative to restoration of public land, private restoration projects are often small scale, personally funded and preference driven. In this thesis, I quantify the outcomes of small-scale private wetland restoration projects by measuring changes in plant and soil microbial communities, and soil physiochemical characteristics. I explore the relationships among variation in plant, soil and microbial datasets and test for causes of this variation. Using a paired sampling design, I sampled 18 restored wetlands and 18 unrestored wetlands on private property in the Wairarapa region. I used a Whitaker plot design to sample wetland plant communities at multiple scales and took soil samples that I analysed for physio-chemical properties. Additionally, I quantified the biomass and community composition of the microbes in the soil samples using phospholipid fatty acid analysis. In my second chapter, I use linear mixed-effect models, principal components analysis, and non-metric multidimensional scaling to ask: How does wetland restoration alter the plant community, soil physio-chemical characteristics, and the soil microbial community? In my third chapter, I employ Procrustes analysis to look at the association of variation in plants, microbes, and soil characteristics to explore whether successional processes of these attributes are concurrent within wetlands. I then use hierarchical cluster analysis to determine which of the wetlands are at similar successional stages and identified site contexts and restoration treatments that were in common among similar wetlands. These analyses provide insight to the conditions that advance successional processes in restored wetlands. Specifically, I ask 1) How do plant, microbial, and soil characteristics co-vary during wetland restoration? 2) How do indicators of wetland succession respond to restoration? 3) Are different restoration practices and site contexts influencing wetland outcomes during restoration? Private wetland restoration enhanced succession in plant, soil, and microbial properties towards those more similar to undisturbed wetland conditions. Specifically, restoration added ~13 native plant species, increased totalfungal and arbuscular mycorrhizal biomass, and total microbial biomass by 25%. Restoration increased soil moisture by 93%, soil organic carbon by 20%, and saturated hydraulic conductivity by 27%. It also reduced bulk density by 0.19 g-1 cm3 and plant available phosphorus (Olsen P) by 23%. Procrustes analysis revealed a lack of congruence in the recovery of plant, microbial, and soil indicators of succession, signifying that the plant community succeeded faster than the microbial community and soil characteristics. Variation in soil and microbial properties separated restored wetlands into two groups of early and later succession wetlands, which was independent of the number of years since restoration began at the sites but corresponded to elements of wetland hydrology. Soil and microbial characteristics in hydrologically connected wetlands recovered more quickly following restoration than hydrologically isolated wetlands. Private restoration increased spatial heterogeneity of outcomes at the plot scale, which depended on site factors. My data suggests that private wetland restoration is effective in increasing plant, soil, and microbial characteristics that produce ecosystem services. Additionally, wetland restoration increased environmental heterogeneity and the capacity for ecosystem service delivery, which may contribute to increased resilience of the Wairarapa landscape.</p>


2021 ◽  
Author(s):  
◽  
Shannon Bentley

<p>Extensive global and national wetland loss has reduced ecosystem services to people and undermines the sustainability of ecosystems. Restoration projects aim to regain the biophysical conditions of remnant wetlands that produce an abundance of ecosystem services. Ecological restoration practices manipulate community succession to enhance ecological functions, and these different successional stages may be reflected in the soil physio-chemical characteristics, plants, and soil microbes, which in turn produce a variety of ecosystem services. Considerable potential for wetland restoration on private property exists in New Zealand, but it remains unknown how successful restoration is when undertaken through a landholder’s own prerogative. Relative to restoration of public land, private restoration projects are often small scale, personally funded and preference driven. In this thesis, I quantify the outcomes of small-scale private wetland restoration projects by measuring changes in plant and soil microbial communities, and soil physiochemical characteristics. I explore the relationships among variation in plant, soil and microbial datasets and test for causes of this variation. Using a paired sampling design, I sampled 18 restored wetlands and 18 unrestored wetlands on private property in the Wairarapa region. I used a Whitaker plot design to sample wetland plant communities at multiple scales and took soil samples that I analysed for physio-chemical properties. Additionally, I quantified the biomass and community composition of the microbes in the soil samples using phospholipid fatty acid analysis. In my second chapter, I use linear mixed-effect models, principal components analysis, and non-metric multidimensional scaling to ask: How does wetland restoration alter the plant community, soil physio-chemical characteristics, and the soil microbial community? In my third chapter, I employ Procrustes analysis to look at the association of variation in plants, microbes, and soil characteristics to explore whether successional processes of these attributes are concurrent within wetlands. I then use hierarchical cluster analysis to determine which of the wetlands are at similar successional stages and identified site contexts and restoration treatments that were in common among similar wetlands. These analyses provide insight to the conditions that advance successional processes in restored wetlands. Specifically, I ask 1) How do plant, microbial, and soil characteristics co-vary during wetland restoration? 2) How do indicators of wetland succession respond to restoration? 3) Are different restoration practices and site contexts influencing wetland outcomes during restoration? Private wetland restoration enhanced succession in plant, soil, and microbial properties towards those more similar to undisturbed wetland conditions. Specifically, restoration added ~13 native plant species, increased totalfungal and arbuscular mycorrhizal biomass, and total microbial biomass by 25%. Restoration increased soil moisture by 93%, soil organic carbon by 20%, and saturated hydraulic conductivity by 27%. It also reduced bulk density by 0.19 g-1 cm3 and plant available phosphorus (Olsen P) by 23%. Procrustes analysis revealed a lack of congruence in the recovery of plant, microbial, and soil indicators of succession, signifying that the plant community succeeded faster than the microbial community and soil characteristics. Variation in soil and microbial properties separated restored wetlands into two groups of early and later succession wetlands, which was independent of the number of years since restoration began at the sites but corresponded to elements of wetland hydrology. Soil and microbial characteristics in hydrologically connected wetlands recovered more quickly following restoration than hydrologically isolated wetlands. Private restoration increased spatial heterogeneity of outcomes at the plot scale, which depended on site factors. My data suggests that private wetland restoration is effective in increasing plant, soil, and microbial characteristics that produce ecosystem services. Additionally, wetland restoration increased environmental heterogeneity and the capacity for ecosystem service delivery, which may contribute to increased resilience of the Wairarapa landscape.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Dandan Liu ◽  
Hongxian Yu ◽  
Kangle Lu ◽  
Qiang Guan ◽  
Haitao Wu

In recent years, the relative importance of the processes driving metacommunity composition has aroused extensive attention and become a powerful approach to identify community patterns and their regulatory mechanisms. We investigated variations in the composition of benthic community in restored wetlands and natural wetlands in the Yellow River Delta (Shandong Province, China). First, spatial structures within each wetland were modeled with Moran eigenvector maps. Next, the variation in community structure among local environmental and spatial variables was partitioned using constrained ordination, and the “elements of metacommunity structure” analysis was used to determine the patterns of best fit for species distributions within metacommunities. Finally, the null model was used to analyze non-random patterns of species co-occurrence. The community structure of benthic invertebrates in restored wetlands and natural wetlands differed significantly. The benthic invertebrate metacommunity structure showed a nested distribution in restored wetlands and a quasi-Clementsian structure in natural wetlands. Pure environmental fractions and pure spatial fractions were critical in regulating benthic invertebrate metacommunities of restored wetlands. In natural wetlands, pure spatial fractions and the interaction between environmental and spatial factors (shared fractions) played a major role in the metacommunity. A species co-occurrence analysis showed that species co-occurred more frequently than expected by chance, demonstrating that biotic interactions were not the main driver of metacommunity structures in both wetland types. Accordingly, the benthic invertebrate metacommunity in estuarine wetlands following freshwater releases was mostly determined by environmental and spatial effects, which resulted in a metacommunity with nested distribution. These results are important for biodiversity protection and ecosystem management of estuarine wetlands in the Yellow River Delta.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 676
Author(s):  
Brendan Carberry ◽  
Tom A. Langen ◽  
Michael R. Twiss

We tested the hypothesis that upland wetland restorations provide the same quality of wetland, in terms of ecosystem services and biodiversity, as natural wetlands in the St. Lawrence River Valley. Water quality (pH, alkalinity, colored dissolved organic matter, phytoplankton community composition, chlorophyll-a, fecal coliform, total phosphorus, dissolved nitrate, turbidity, specific conductivity) in 17 natural and 45 restored wetlands was compared to determine whether wetland restoration provided similar physicochemical conditions as natural wetlands in the Saint Lawrence River Valley of northeastern New York State. Natural wetlands were more acidic, which was hypothesized to result from the avoidance of naturally acidic regions by farmers seeking to drain wetlands for crop and pasture use. Natural wetlands had significantly greater fecal coliform concentrations. Restored wetlands had significantly greater specific conductivity and related ions, and this is attributed to the creation of wetlands upon marine clay deposits. Other water quality indicators did not differ between restored and natural wetlands. These findings confirm other research at these same wetlands showing no substantial differences between restored and natural wetlands in major biotic indicators. Thus, we conclude that wetland restoration does result in wetlands that are functionally the same as the natural wetlands they were designed to replicate.


2021 ◽  
Author(s):  
Elke Eichelmann ◽  
Mauricio Cruz Mantoani ◽  
Samuel D. Chamberlain ◽  
Kyle S. Hemes ◽  
Patricia Y Oikawa ◽  
...  

Reliable partitioning of micrometeorologically measured evapotranspiration (ET) into evaporation (E) and transpiration (T) would greatly enhance our understanding of the water cycle and its response to climate change. While some methods on ET partitioning have been developed, their underlying assumptions make them difficult to apply more generally, especially in sites with large contributions of E. Here, we report a novel ET partitioning method using Artificial Neural Networks (ANN) in combination with a range of environmental input variables to predict daytime E from nighttime ET measurements. The study uses eddy covariance data from four restored wetlands in the Sacramento-San Joaquin Delta, California, USA, as well as leaf-level T data for validation. The four wetlands vary in structure from some with large areas of open water and little vegetation to very densely vegetated wetlands, representing a range of ET conditions. The ANNs were built with increasing complexity by adding the input variable that resulted in the next highest average value of model testing R2 across all sites. The order of variable inclusion (and importance) was: vapor pressure deficit (VPD) > gap-filled sensible heat flux (H_gf) > air temperature (Tair) > friction velocity (u∗) > other variables. Overall, 36 ANNs were analyzed. The model using VPD, H_gf, Tair, and u∗ (F11), showed an average testing R2 value across all sites of 0.853. In comparison with the model that included all 10 variables (F36), F11 generally performed better during validation with independent data. In comparison to other methods described in the literature, the ANN method generated more consistent T/ET partitioning results especially for more complex sites with large E contributions. Our method improves the understanding of T/ET partitioning. While it may be particularly suited to flooded ecosystems, it can also improve T/ET partitioning in other systems, increasing our knowledge of the global water cycle.


Sign in / Sign up

Export Citation Format

Share Document