scholarly journals Comparison on Land-Use/Land-Cover Indices in Explaining Land Surface Temperature Variations in the City of Beijing, China

Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1018
Author(s):  
Muhammad Sadiq Khan ◽  
Sami Ullah ◽  
Liding Chen

The urban thermal environment is closely related to landscape patterns and land surface characteristics. Several studies have investigated the relationship between land surface characteristics and land surface temperature (LST). To explore the effects of the urban landscape on urban thermal environments, multiple land-use/land-cover (LULC) remote sensing-based indices have emerged. However, the function of the indices in better explaining LST in the heterogeneous urban landscape has not been fully addressed. This study aims to investigate the effect of remote-sensing-based LULC indices on LST, and to quantify the impact magnitude of green spaces on LST in the city built-up blocks. We used a random forest classifier algorithm to map LULC from the Gaofen 2 (GF-2) satellite and retrieved LST from Landsat-8 ETM data through the split-window algorithm. The pixel values of the LULC types and indices were extracted using the line transect approach. The multicollinearity effect was excluded before regression analysis. The vegetation index was found to have a strong negative relationship with LST, but a positive relationship with built-up indices was found in univariate analysis. The preferred indices, such as normalized difference impervious index (NDISI), dry built-up index (DBI), and bare soil index (BSI), predicted the LST (R2 = 0.41) in the multivariate analysis. The stepwise regression analysis adequately explained the LST (R2 = 0.44) due to the combined effect of the indices. The study results indicated that the LULC indices can be used to explain the LST of LULC types and provides useful information for urban managers and planners for the design of smart green cities.

2019 ◽  
Vol 8 (4) ◽  
pp. 1834-1839

This study evaluated the land use/land cover (LULC) changes in Tuguegarao City and analyzed its impact on Land Surface Temperature (LST). It was carried out using Remote Sensing and Geographic Information System (GIS) techniques. Three Landsat TM and ETM+ images data were acquired for the years 1990, 2005 and 2016 from USGS Earth Explorer portal. ArcGIS software was used to determine the area statistics of the different land cover and to make the final LULC map. LST for the study area was taken from the thermal infrared band of the satellite images by converting the image digital number into degrees Kelvin using the LMin and LMax spectral radiance scaling factors. The largest areal change appeared in the built-up area with an increase of 1120.32 ha. However, this study detected higher LST in the crop land, grassland and barren land areas of the city rather than the built-up parts of the city which does not follow many of previous studies. The results of the study can be presented to the Local Government Unit so that they can draft appropriate laws for the betterment of the city specially that rapid urbanization and uncontrolled population growth may have extreme impact on the environment.


2019 ◽  
Vol 12 (3) ◽  
pp. 117-140
Author(s):  
Sunil Kumar ◽  
Swagata Ghosh ◽  
Ramesh Singh Hooda ◽  
Sultan Singh

Abstract Land use Land cover have significance in relation to Land, the most vital and fundamental resource pertaining to the urban development. Unprecedented urban growth has a noteworthy impact on natural landscape by converting natural land-cover in Haryana. Hisar, an area recognized for rapid urban growth is less explored in terms of research. The present research has shown a significant change in land use in terms of expansion of built-up area from 3.7 % (1991) to 5.0 % (2001) and 6.2 % (2011) by encroaching into agricultural land. Despite the clear difference between average land surface temperature for built up and non-built up area, grazing land and sandy waste, bare land in the rural surrounding possess higher temperature compared to the city core which contradicts the reported impact of urbanization earlier. Such contrary pertains to sparse vegetation cover leading to reduced evaporative cooling during dry pre-monsoon summer in the rural surrounding. On the other side, green parks and plantation in the city contribute to lower mean temperature because of high rates of evapotranspiration and produce ‘oasis effect’ in the present study area located in semi-arid climatic zone. Regression analysis between temperature and Normalized Difference Vegetation Index, Normalized Difference Built-up Index exhibited a strong negative and positive correlation respectively (Pearson’s r: between -0.79 to -0.87 and between 0.79 to 0.84 respectively). Future land use prediction project an increase (1.3 %) in built-up area from 2011 to 2021. This study recommends urban plantation and prohibition to overgrazing to check the heat effect.


Author(s):  
Simil Amir Siddiqui

Urban heat islands (UHI) are areas with elevated temperatures occurring in cities compared to surrounding rural areas. This study realizes the lack of research regarding the trends of UHIs in desert countries and focuses on Doha. The research includes twelve months of two-time periods; 2000-2019. ArcGIS software was used to compute the land surface temperature (LST) of the city using Landsat images. Land use/land cover (LULC) maps were computed to show how the city has evolved in 19 years. 30 field samples were used to verify the accuracy of the LULC. Results showed UHI in Doha did not display similar pattern to that of cities in subtropical and temperate regions. Higher temperatures were prevalent in out-skirts comprising of barren and built-up areas with high population and no vegetation. Comparatively, the main downtown with artificially planted vegetation and shade from skyscrapers created cooler microclimates. The overall LST of greater Doha has increased by 0.7°C from 2000 to 2019. Furthermore %LULC of built up, vegetation, barren land, marsh land and water body were 29%, 4.5%, 58.6%, 2.8% and 5% in 2000 and 56.5 %, 8.2%, 33.2 %, 0% and 2.1% in 2019 respectively. Overall, there was an increase in built-up and vegetation decrease in water and barren areas and complete loss of marshland. Highest temperatures were recorded for marshland area in year 2000 and barren and built in year 2019. Transect profiles showed positive correlation between NDBI and LST and a negative correlation between NDVI and LST.


Author(s):  
Sudhansu S. Rath ◽  
Jagabandhu Panda ◽  
Srutisudha Mohanty

Urban transition is an unstoppable process. Globally, several planning measures are taken by the city and country administration to control the sprawling process. Despite all the planning, most of the cities experience appreciable impact of urbanization on the localized weather parameters. This chapter summarizes the understanding relating to urban modification of localized weather, that is, changes in precipitation, temperature, and wind speed in the form of increase or decrease, their spatio-temportal distribution, urban heat island (UHI), and urban wind island (UWI). The impacts of the urbanization are primarily because of changes in land-surface characteristics due to the alteration of land use in a city. The urbanization effects on local or mesoscale weather could be studied both through observations and/or numerical modeling. The purpose of this chapter is to provide a review of most of the relevant studies carried out globally and with a special emphasis on India.


Sign in / Sign up

Export Citation Format

Share Document