scholarly journals Wnt and β-Catenin Signaling in the Bone Metastasis of Prostate Cancer

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1099
Author(s):  
Zachary Kaplan ◽  
Steven P. Zielske ◽  
Kristina G. Ibrahim ◽  
Frank C. Cackowski

Wnt family proteins and β-catenin are critical for the regulation of many developmental and oncogenic processes. Wnts are secreted protein ligands which signal using a canonical pathway, and involve the transcriptional co-activator β-catenin or non-canonical pathways that are independent of β-catenin. Bone metastasis is unfortunately a common occurrence in prostate cancer and can be conceptualized as a series of related steps or processes, most of which are regulated by Wnt ligands and/or β-catenin. At the primary tumor site, cancer cells often take on mesenchymal properties, termed epithelial mesenchymal transition (EMT), which are regulated in part by the Wnt receptor FZD4. Then, Wnt signaling, especially Wnt5A, is of importance as the cells circulate in the blood stream. Upon arriving in the bones, cancer cells migrate and take on stem-like or tumorigenic properties, as aided through Wnt or β-catenin signaling involving CHD11, CD24, and Wnt5A. Additionally, cancer cells can become dormant and evade therapy, in part due to regulation by Wnt5A. In the bones, E-selectin can aid in the reversal of EMT, a process termed mesenchymal epithelial transition (MET), as a part of metastatic tumorigenesis. Once bone tumors are established, Wnt/β-catenin signaling is involved in the suppression of osteoblast function largely through DKK1.

2017 ◽  
Vol 203 (2) ◽  
pp. 114-127 ◽  
Author(s):  
Reem Malek ◽  
Hailun Wang ◽  
Kekoa Taparra ◽  
Phuoc T. Tran

Mounting data points to epithelial plasticity programs such as the epithelial-mesenchymal transition (EMT) as clinically relevant therapeutic targets for the treatment of malignant tumors. In addition to the widely realized role of EMT in increasing cancer cell invasiveness during cancer metastasis, the EMT has also been implicated in allowing cancer cells to avoid tumor suppressor pathways during early tumorigenesis. In addition, data linking EMT to innate and acquired treatment resistance further points towards the desire to develop pharmacological therapies to target epithelial plasticity in cancer. In this review we organized our discussion on pathways and agents that can be used to target the EMT in cancer into 3 groups: (1) extracellular inducers of EMT, (2) the transcription factors that orchestrate the EMT transcriptome, and (3) the downstream effectors of EMT. We highlight only briefly specific canonical pathways known to be involved in EMT, such as the signal transduction pathways TGFβ, EFGR, and Axl-Gas6. We emphasize in more detail pathways that we believe are emerging novel pathways and therapeutic targets such as epigenetic therapies, glycosylation pathways, and immunotherapy. The heterogeneity of tumors and the dynamic nature of epithelial plasticity in cancer cells make it likely that targeting only 1 EMT-related process will be unsuccessful or only transiently successful. We suggest that with greater understanding of epithelial plasticity regulation, such as with the EMT, a more systematic targeting of multiple EMT regulatory networks will be the best path forward to improve cancer outcomes.


Sign in / Sign up

Export Citation Format

Share Document