scholarly journals The Electronic Structure and Optical Properties of Anatase TiO2 with Rare Earth Metal Dopants from First-Principles Calculations

Materials ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 179 ◽  
Author(s):  
Kefeng Xie ◽  
Qiangqiang Jia ◽  
Yizhe Wang ◽  
Wenxue Zhang ◽  
Jingcheng Xu
ChemInform ◽  
2007 ◽  
Vol 38 (37) ◽  
Author(s):  
Chang-Ming Fang ◽  
Joseph Bauer ◽  
Jean-Yves Saillard ◽  
Jean-Francois Halet

2020 ◽  
Vol 77 (7) ◽  
pp. 587-591
Author(s):  
Rundong Liang ◽  
Xiuwen Zhao ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Xiaobo Yuan ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (27) ◽  
pp. 16360-16370 ◽  
Author(s):  
Muhammad Rafique ◽  
Yong Shuai ◽  
He-Ping Tan ◽  
Muhammad Hassan

In this paper, the structural, electronic, magnetic and optical properties of alkaline earth metal (AEM) atom-doped monolayer graphene are investigated using first-principles calculations.


2008 ◽  
Vol 28 (11) ◽  
pp. 2191-2194
Author(s):  
冯丽萍 Feng Liping ◽  
刘正堂 Liu Zhengtang ◽  
许冰 Xu Bing

2013 ◽  
Vol 373-375 ◽  
pp. 1965-1969
Author(s):  
Kun Nan Qin ◽  
Ling Zhi Zhao ◽  
Yong Mei Liu ◽  
Fang Fang Li ◽  
Chao Yang Cui

The electronic structure and optical properties of Cu-doped SnS2with Sn-substituted content of 0, 12.5 and 37.5 at.% were successfully calculated by the first principles plane-wave pseudopotentials based on the density functional theory. It is found that the intermediate belts appear near the Fermi level and the energy band gap becomes narrower after the doping of the Cu atoms. The absorption peaks show a remarkable redshift and the absorption region broadens relatively after introducing acceptor impurity level. When Sn atoms of 37.5 at% were substituted by Cu, the optical absorption coefficient is significantly improved in the frequency range below 5.58 eV and over 8.13 eV.


2019 ◽  
Vol 75 (5) ◽  
pp. 562-567 ◽  
Author(s):  
Jiliang Zhang ◽  
Yong-Mook Kang ◽  
Guangcun Shan ◽  
Svilen Bobev

The crystal structure of the gadolinium iron bismuthide Gd6FeBi2 has been characterized by single-crystal X-ray diffraction data and analyzed in detail using first-principles calculations. The structure is isotypic with the Zr6CoAl2 structure, which is a variant of the ZrNiAl structure and its binary prototype Fe2P (Pearson code hP9, Wyckoff sequence g f d a). As such, the structure is best viewed as an array of tricapped trigonal prisms of Gd atoms centered alternately by Fe and Bi. The magnetic-ordering temperature of this compound (ca 350 K) is much higher than that of other rare-earth metal-rich phases with the same or related structures. It is also higher than the ordering temperature of many other Gd-rich ternary phases, where the magnetic exchange is typically governed by Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions. First-principles calculations reveal a larger than expected Gd magnetic moment, with the additional contribution arising from the Gd 5d electrons. The electronic structure analysis suggests strong Gd 5d–Fe 3d hybridization to be the cause of this effect, rather than weak interactions between Gd and Bi. These details are of importance for understanding the magnetic response and explaining the high ordering temperature in this material.


Sign in / Sign up

Export Citation Format

Share Document