Structural analysis of Gd6FeBi2 from single-crystal X-ray diffraction methods and electronic structure calculations

2019 ◽  
Vol 75 (5) ◽  
pp. 562-567 ◽  
Author(s):  
Jiliang Zhang ◽  
Yong-Mook Kang ◽  
Guangcun Shan ◽  
Svilen Bobev

The crystal structure of the gadolinium iron bismuthide Gd6FeBi2 has been characterized by single-crystal X-ray diffraction data and analyzed in detail using first-principles calculations. The structure is isotypic with the Zr6CoAl2 structure, which is a variant of the ZrNiAl structure and its binary prototype Fe2P (Pearson code hP9, Wyckoff sequence g f d a). As such, the structure is best viewed as an array of tricapped trigonal prisms of Gd atoms centered alternately by Fe and Bi. The magnetic-ordering temperature of this compound (ca 350 K) is much higher than that of other rare-earth metal-rich phases with the same or related structures. It is also higher than the ordering temperature of many other Gd-rich ternary phases, where the magnetic exchange is typically governed by Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions. First-principles calculations reveal a larger than expected Gd magnetic moment, with the additional contribution arising from the Gd 5d electrons. The electronic structure analysis suggests strong Gd 5d–Fe 3d hybridization to be the cause of this effect, rather than weak interactions between Gd and Bi. These details are of importance for understanding the magnetic response and explaining the high ordering temperature in this material.

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1037 ◽  
Author(s):  
Sai Wang ◽  
Changzeng Fan

When processing single crystal X-ray diffraction datasets for twins of Al2Cu sample synthesized by the high-pressure sintering (HPS) method, we have clarified why the crystal structure of Al2Cu was incorrectly solved about a century ago. The structural relationships between all existing Al2Cu phases, including the Owen-, θ-, θ’-, and Ω-Al2Cu phases, were investigated and established based on a proposed pseudo Al2Cu phase. Two potential phases have been built up by adjusting the packing sequences of A/B layers of Al atoms that were inherent in all existing Al2Cu phases. The mechanical, thermal, and dynamical stability of two such novel phases and their electronic properties were investigated by first-principles calculations.


RSC Advances ◽  
2018 ◽  
Vol 8 (18) ◽  
pp. 9946-9955 ◽  
Author(s):  
V. V. Atuchin ◽  
Fei Liang ◽  
S. Grazhdannikov ◽  
L. I. Isaenko ◽  
P. G. Krinitsin ◽  
...  

The LiGaTe2 crystals were grown by the Bridgman–Stockbarger technique and the cell parameter dependence on temperature in the range of 303–563 K was evaluated by the X-ray diffraction analysis and first principles calculations.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1322
Author(s):  
Zheng Xia ◽  
Bin Wen ◽  
Changzeng Fan

A disordered stoichiometric Al3Fe phase was obtained when synthesizing Al8Fe3 by the spark plasma sintering (SPS) approach and its crystal structure was determined by the single-crystal X-ray diffraction (SXRD) techniques. The refined structure is an isotype of the reported Al5Fe2 phase, only different in the site occupation factors (s. o. f.) of Al2 and Al3 atoms, which was refined to be 0.431 (13) and 0.569 (13), respectively. Stimulated by the structural refinement results, an ordered stoichiometric Al3Fe phase was established. First-principles calculations reveal that the ordered Al3Fe phase is mechanically and dynamically stable and has a much lower value of enthalpy of formation than any other proposed Al3Fe phases, although it is also metallic and metastable.


2014 ◽  
Vol 52 (12) ◽  
pp. 1025-1029
Author(s):  
Min-Wook Oh ◽  
Tae-Gu Kang ◽  
Byungki Ryu ◽  
Ji Eun Lee ◽  
Sung-Jae Joo ◽  
...  

2015 ◽  
Vol 56 (3) ◽  
pp. 492-496 ◽  
Author(s):  
A. A. Lavrentyev ◽  
B. V. Gabrelian ◽  
P. N. Shkumat ◽  
I. Ya. Nikiforov ◽  
O. V. Parasyuk ◽  
...  

1989 ◽  
Vol 151 ◽  
Author(s):  
W. R. Bennett ◽  
R. F. C. Farrow ◽  
S. S. P. Parkin ◽  
E. E. Marinero

ABSTRACTWe report on the new epitaxial system LaF3/Er/Dy/Er/LaF3/GaAs (111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films and multilayers.


2019 ◽  
Vol 470 ◽  
pp. 607-612 ◽  
Author(s):  
Martin Magnuson ◽  
Grzegorz Greczynski ◽  
Fredrik Eriksson ◽  
Lars Hultman ◽  
Hans Högberg

Sign in / Sign up

Export Citation Format

Share Document