scholarly journals Metal-Free Organic Chromophores Featuring an Ethynyl-Thienothiophene Linker with an n-Hexyl Chain for Translucent Dye-Sensitized Solar Cells

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1741 ◽  
Author(s):  
Dong-Suk Lim ◽  
Kwang-Won Park ◽  
Alan A. Wiles ◽  
Jongin Hong

We report the simple synthesis of two organic chromophores featuring an ethynyl-thienothiophene linker with an n-hexyl chain (CSD-03 and CSD-04), their optical and electrochemical properties, and their use as photosensitizers in dye-sensitized solar cells (DSSCs). Our theoretical and experimental studies show that adding the second thienothiophene allows for narrowing the bandgap of the molecule and thus ensuring more light harvesting in the visible region. The efficiencies of both CSD-03 (5.46 ± 0.03%) and CSD-04 (5.20 ± 0.03%) are comparable to that of N719 (5.92 ± 0.01%) in translucent DSSCs fabricated with 5 μm-thick TiO2 photoanodes.

2020 ◽  
Vol 8 (43) ◽  
pp. 15322-15330 ◽  
Author(s):  
Fang-Sian Lin ◽  
Pragya Priyanka ◽  
Miao-Syuan Fan ◽  
Sureshraju Vegiraju ◽  
Jen-Shyang Ni ◽  
...  

A series of new metal-free organic dyes based on 3,3′-dithioalkyl-2,2′-bithiophene (SBT) organic chromophores was synthesized for use in dye-sensitized solar cells (DSSCs).


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ratna Chauhan ◽  
Reena Kushwaha ◽  
Lal Bahadur

In dye-sensitized solar cells, the photosensitization of TiO2thin film semiconductor was accomplished by using different classes of metal-free (fluorone, triarymethane, azo and thiazine based) organic dyes as photosensitizer. The broad electronic absorption spectra of these dyes have been obtained in the visible region due to the presence of chromophoric groups in these dyes. The contribution of these dyes as light harvesting species is seen from the photocurrent action spectrum of the cell. Here, we report the sensitization activity of these dyes in terms of current-potential curve, open-circuit potential, fill factor, IPCE, and overall solar energy conversion efficiency which have been evaluated under 100 mW/cm2light intensity. The results suggest that dyes based on fluorone and azo groups are promising candidates for high performance, dye-sensitized solar cells because of better anchoring groups (–COOH, –OH, and –SO3-) present in these dyes. Better anchorage of dyes to the surface of TiO2semiconductor helps in charge transfer phenomenon.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3918
Author(s):  
Ratshilumela S. Dima ◽  
Lutendo Phuthu ◽  
Nnditshedzeni E. Maluta ◽  
Joseph K. Kirui ◽  
Rapela R. Maphanga

Titanium dioxide (TiO2) polymorphs have recently gained a lot of attention in dye-sensitized solar cells (DSSCs). The brookite polymorph, among other TiO2 polymorphs, is now becoming the focus of research in DSSC applications, despite the difficulties in obtaining it as a pure phase experimentally. The current theoretical study used different nonmetals (C, S and N) and (C-S, C-N and S-N) as dopants and co-dopants, respectively, to investigate the effects of mono-doping and co-doping on the electronic, structural, and optical structure properties of (210) TiO2 brookite surfaces, which is the most exposed surface of brookite. The results show that due to the narrowing of the band gap and the presence of impurity levels in the band gap, all mono-doped and co-doped TiO2 brookite (210) surfaces exhibit some redshift. In particular, the C-doped, and C-N co-doped TiO2 brookite (210) surfaces exhibit better absorption in the visible region of the electromagnetic spectrum in comparison to the pure, S-doped, N-doped, C-S co-doped and N-S co-doped TiO2 brookite (210) surfaces.


2009 ◽  
Vol 2 (6) ◽  
pp. 694 ◽  
Author(s):  
Wei-Hao Chiu ◽  
Chia-Hua Lee ◽  
Hsin-Ming Cheng ◽  
Hsiu-Fen Lin ◽  
Shih-Chieh Liao ◽  
...  

2018 ◽  
Vol 382 ◽  
pp. 369-373
Author(s):  
Usana Mahanitipong ◽  
Preeyapat Prompan ◽  
Rukkiat Jitchati

The four thiocyanate free ruthenium(II) complexes; [Ru(N^N)2(C^N)]PF6were synthesized and characterized for dye sensitized solar cells (DSSCs). The results showed that the broad absorptions covered the visible region from metal to ligand charge transfer (MLCT) were obtained with the main peaks at 560, 490 and 400 nm. The materials were studied DSSC performance under standard AM 1.5. Compound PP1 showed the power conversion efficiency (PCE) at 3.10%, with a short-circuit photocurrent density (Jsc) of 7.99 mA cm-2, an open-circuit photovoltage (Voc) of 563 mV and a high fill factor (ff) of 0.690.


Sign in / Sign up

Export Citation Format

Share Document