scholarly journals Different Effects of Annealing on Microstructure Evolution and SERS Performance for Cu–Cr Alloy Film and Bulk Alloy

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2990 ◽  
Author(s):  
Xiaoxue Huang ◽  
Haoliang Sun ◽  
Jun Shen ◽  
Kai Cui ◽  
Guangxin Wang

Copper–chromium alloy film and Cu–Cr bulk alloy were obtained using magnetron sputtering and vacuum smelting. Experimental results indicated that Cu–Cr bulk alloy and alloy films having different residual stress and atomic diffusion exhibit a significant difference in microstructure evolution behaviors after annealing. Numerous polyhedral Cu particles and dendritic Cr particles precipitated on the surface of annealed Cu–Cr alloy film and as–cast Cu–Cr bulk alloy, respectively. Cu particles were formed under the driving of energy and residual stress in the film. The effect of annealing temperature and Cr content on the size and quantity of Cu particles is discussed. Cr particles precipitated on the bulk alloy due to the low solid solubility of Cr in Cu, and the crystallinity of Cu grains promoted the diffusion of Cr atoms. The surface–enhanced Raman scattering (SERS) intensity of the Cu–14.6%Cr alloy film was obviously higher than that of the Cu–14.2%Cr bulk alloy. The particles/film composite structure possessed the appropriate particle number, surface roughness, and interstitial gap, as opposed to the bulk material, to effectively improve SERS enhancement.

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2467 ◽  
Author(s):  
Haoliang Sun ◽  
Xiaoxue Huang ◽  
Xinxin Lian ◽  
Guangxin Wang

Copper–zirconium bulk alloy and Cu–Zr alloy films are prepared by vacuum smelting and magnetron sputtering, respectively, and subsequently annealing is conducted. Results show that Cu–Zr bulk alloy and alloy films exhibit significantly different microstructure evolution behaviors after annealing due to different microstructures and residual stress states. CuxZr alloy compounds disperse at the grain boundary of Cu grains in as-cast and annealed Cu–Zr bulk alloys. However, unlike bulk alloys, a large number of polyhedral Cu particles are formed on the Cu–Zr thin films’ surface upon thermal annealing. Kinetically, the residual compressive stress in the Cu–Zr films promotes the formation of Cu particles. The influencing factors and the path for mass transport in the formation of the particles are discussed. The large-specific surface area particles/film composite structure has potential applications in Surface-Enhanced Raman Scattering, catalysis, and other fields.


2020 ◽  
Author(s):  
Yuanjiang Lv ◽  
Xin Xin Lian ◽  
Haoliang Sun ◽  
Xiaoxue Huang ◽  
Guang xin Wang

Sign in / Sign up

Export Citation Format

Share Document