scholarly journals Motion and Distribution of Floating Grain in Direct-Chill Casting of Aluminum Alloys: Experiments and Numerical Modeling

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5379
Author(s):  
Qipeng Dong ◽  
Yanbin Yin ◽  
Zhen Zhu ◽  
Hiromi Nagaumi

Sedimentation of free-floating grains is the main origin of the negative centerline segregation in direct-chill casting of aluminum alloys. This study examines the motion and distribution of the floating grains during casting using experimental measurements and numerical modeling. The typical floating grains consisting of interior solute-lean coarse dendrites and periphery fine dendrites were experimentally observed only in the central region of the billet along with the negative segregation. The billet exhibits the strongest segregation at the center where the most floating grains are found. In simulations, under the action of the convection and the underlying forces, the grains floating in the transition region exhibit different motion behaviors, i.e., settling to the mushy zone, floating in the slurry zone, and moving upward to the liquid zone. However, most grains were transported to the central region of the billet and then were captured by the mushy zone and settled. Therefore, the floating grains comprise the largest share of the grain structure at the center of the billet, in agreement with the experimental results. Moreover, the simulation results indicate that the increased size of the grains promotes the sedimentation of the floating grains. These results are important for the future alleviation of negative centerline segregation in direct-chill casting of aluminum alloys.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5740
Author(s):  
Kawther Al-Helal ◽  
Jayesh B. Patel ◽  
Geoff M. Scamans ◽  
Zhongyun Fan

AA6111 aluminum automotive body-sheet alloy has been formulated from 100% Taint Tabor scrap aluminum. Direct chill casting with and without high shear melt conditioning (HSMC) was used to produce the AA6111 alloy billets. Both homogenized and non-homogenized billets were extruded into sheets. The optical micrographs of the melt conditioned direct chill (MC-DC) samples showed refined equiaxed grains in comparison to direct chill (DC) cast and direct chill grain refined (DC-GR) samples. Optical metallography showed extensive peripheral coarse grain (PCG) for the DC, DC-GR and MC-DC planks extruded from the homogenized standard AA6111 billets while planks extruded from modified AA6111 billets (with recrystallization inhibitors) showed thin PCG band. The co-addition of recrystallization inhibitors Mn, Zr, and Cr with elimination of the billet homogenization step had a favorable impact on the microstructure of the AA6111 alloy following the extrusion process where a fibrous grain structure was retained across the whole section of the planks. The mechanical properties of as-cast planks extruded from non-homogenized billets were similar to those extruded from homogenized billets. Eliminating the homogenization heat treatment step prior to extrusion has important ramifications in terms of processing cost reduction.


2001 ◽  
Author(s):  
Christopher J. Vreeman ◽  
J. David Schloz ◽  
Matthew John M. Krane

Abstract A continuum mixture model of the direct chill casting process is compared to experimental results from industrial scale aluminum billets. The model, which includes the transport of free-floating solid particles, can simulate the effect of a grain refiner on macrosegregation and fluid flow. It is applied to an Al - 6 wt% Cu alloy and the effect of grain refiner on macrosegregation, sump profile, and temperature fields are presented. Two 45 cm diameter billets were cast under production conditions with and without grain refiner. Temperature and composition measurements and sump profiles are compared to the numerical results. The comparison shows excellent agreement for the grain refined case. It is believed that an incorrect assumption about the grain structure prevents good agreement in the non-grain refined billet.


Sign in / Sign up

Export Citation Format

Share Document