scholarly journals Production of TiC-MMCs Reinforcements in Cast Ferrous Alloys Using In Situ Methods

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5072
Author(s):  
Aida B. Moreira ◽  
Laura M. M. Ribeiro ◽  
Manuel F. Vieira

This literature review aims to summarize the research conducted on the production of locally reinforced ferrous castings based on metal matrix composites reinforced with TiC (TiC-MMCs). One way to improve the wear resistance of cast components is to reinforce critical regions locally with metal matrix composites (MMCs) without changing the toughness of the component core. The in situ method of self-propagating high-temperature synthesis is one of the main approaches for the production of this enhanced material. Using this approach, the reinforcement is formed from a powder compact inserted in the mold cavity. The temperature of the liquid metal then produces the combustion reactions of the powders, which promote the formation of the ceramic phase. This paper focuses on eight powder systems used to synthesize TiC: Ti-C, Ni-Ti-C, Ni-Ti-B4C, Fe-Ti-C/Fe-Cr-Ti-C, Cu-Ti-B4C, Al-Ti-C, and Al-Ti-B4C, and provides an overview of the methodologies used as well as the effect of processing variables on the microstructural and mechanical characteristics of the reinforcement zones.

2020 ◽  
Author(s):  
Nagaraj Chelliah Machavallavan ◽  
Rishi Raj ◽  
M.K. Surappa

In-situ magnesium based metal matrix composites (MMCs) belong to the category of advanced light weight metallic composites by which ceramic dispersoids are produced by a chemical reaction within the metal matrix itself. In-situ MMCs comprised uniform distribution of thermodynamically stable ceramic dispersoids, clean and unoxidized ceramic-metal interfaces having high interfacial strength. In last two decades, investigators have been collaborating to explore the possibility of enhancing the high temperature creep resistance performance in polymer-derived metal matrix composites (P-MMCs) by utilizing polymer precursor approach. A unique feature of the P-MMC process is that since all constituents of the ceramic phase are built into the polymer molecules itself, there is no need for a separate chemical reaction between the host metal and polymer precursor in order to form in-situ ceramic particles within the molten metal. Among the different polymer precursors commercially available in the market, the silicon-based polymers convert into the ceramic phase in the temperature range of 800–1000°C. Therefore, these Si-based polymers can be infused into molten Mg or Mg-alloys easily by simple stir-casting method. This chapter mainly focuses on understanding the structure–property correlation in both the Mg-based and Mg-alloy based in-situ P-MMCs fabricated by solidification processing via polymer precursor approach.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

2019 ◽  
Vol 61 (8) ◽  
pp. 779-786
Author(s):  
Bellamballi Munivenkatappan Muthami Selvan ◽  
Veeramani Anandakrishnan ◽  
Muthukannan Duraiselvam ◽  
Sivaraj Sundarameenakshi

2018 ◽  
Vol 738 ◽  
pp. 344-352 ◽  
Author(s):  
R. Vasanth Kumar ◽  
R. Keshavamurthy ◽  
Chandra S. Perugu ◽  
Praveennath G. Koppad ◽  
Mohammad Alipour

2021 ◽  
Vol 87 (5) ◽  
pp. 34-42
Author(s):  
N. B. Podymova ◽  
I. E. Kalashnikov ◽  
L. I. Kobeleva

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.


Sign in / Sign up

Export Citation Format

Share Document