scholarly journals Green Copolymers Based on Poly(Lactic Acid)—Short Review

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5254
Author(s):  
Konrad Stefaniak ◽  
Anna Masek

Polylactic acid (PLA) is a biodegradable and biocompatible polymer that can be applied in the field of packaging and medicine. Its starting substrate is lactic acid and, on this account, PLA can also be considered an ecological material produced from renewable resources. Apart from several advantages, polylactic acid has drawbacks such as brittleness and relatively high glass transition and melting temperatures. However, copolymerization of PLA with other polymers improves PLA features, and a desirable material marked by preferable physical properties can be obtained. Presenting a detailed overview of the accounts on the PLA copolymerization accomplishments is the innovation of this paper. Scientific findings, examples of copolymers (including branched, star, grafted or block macromolecules), and its applications are discussed. As PLA copolymers can be potentially used in pharmaceutical and biomedical areas, the attention of this article is also placed on the advances present in this field of study. Moreover, the subject of PLA synthesis is described. Three methods are given: azeotropic dehydrative condensation, direct poly-condensation, and ring-opening polymerization (ROP), along with its mechanisms. The applied catalyst also has an impact on the end product and should be adequately selected depending on the intended use of the synthesized PLA. Different ways of using stannous octoate (Sn(Oct)2) and examples of the other inorganic and organic catalysts used in PLA synthesis are presented.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Evelyn Carolina Martínez Ceballos ◽  
Ricardo Vera Graziano ◽  
Gonzalo Martínez Barrera ◽  
Oscar Olea Mejía

Poly(dichlorophosphazene) was prepared by melt ring-opening polymerization of the hexachlorocyclotriphosphazene. Poly[bis(2-hydroxyethyl-methacrylate)-phosphazene] and poly[(2-hydroxyethyl-methacrylate)-graft-poly(lactic-acid)-phosphazene] were obtained by nucleophilic condensation reactions at different concentrations of the substituents. The properties of the synthesized copolymers were assessed by FTIR,1H-NMR and31P-NMR, thermal analysis (DSC-TGA), and electron microscopy (SEM). The copolymers have a block structure and show twoTg's below room temperature. They are stable up to a temperature of 100°C. The type of the substituents attached to the PZ backbone determines the morphology of the polymers.


Polymer ◽  
2012 ◽  
Vol 53 (18) ◽  
pp. 3842-3848 ◽  
Author(s):  
Atsushi Abiko ◽  
Shin-ya Yano ◽  
Makoto Iguchi

2017 ◽  
Vol 19 (3) ◽  
pp. 816-822 ◽  
Author(s):  
A. Ortner ◽  
A. Pellis ◽  
C. Gamerith ◽  
A. Orcal Yebra ◽  
D. Scaini ◽  
...  

Controlled enzymatic hydrolysis of PLA surfaces, followed by ring opening of AKD, leads to superhydrophobic surfaces (WCA >150°).


RSC Advances ◽  
2020 ◽  
Vol 10 (65) ◽  
pp. 39693-39699
Author(s):  
Pei-Yi Wong ◽  
Sook-Wai Phang ◽  
Azizah Baharum

An anti-static polymer film was prepared using biodegradable poly(lactic acid) as a matrix and polyaniline (PAni) as an anti-static agent to eliminate accumulated static charges.


2019 ◽  
Vol 7 (13) ◽  
pp. 11885-11893 ◽  
Author(s):  
Hai Anh Le Phuong ◽  
Nor Amira Izzati Ayob ◽  
Christopher F. Blanford ◽  
Nurul Fazita Mohammad Rawi ◽  
Gyorgy Szekely

2008 ◽  
Vol 16 (9) ◽  
pp. 597-604 ◽  
Author(s):  
Wang Ning ◽  
Zhang Xingxiang ◽  
Yu Jiugao ◽  
Fang Jianming

Poly(lactic acid) (PLA) is a biodegradable thermoplastic that can be produced from renewable resources, and so was considered as a major alternative to petroleum-based plastics for packaging applications. However, plasticisation of PLA was required in order to obtain films with sufficient flexibility. Poly(1, 3-butylene adipate) (PBA) was used as a novel plasticiser for PLA, and acetyltributyl citrate (ATBC) was used as the control. FTIR revealed that interaction took place between PLA and plasticiser. With an increasing plasticiser content, storage modulus and glass transition temperature decreased, but elongation at break increased. The elongation at break of PBA-plasticised PLA (PBA content 30 wt.%) could be above 600%, higher than that of ATBC-plasticised PLA (ATBC content 30 wt.%). Moreover, PBA was able to restrain thermally induced migration of plasticiser in plasticised PLA. It was also found that the migration rate of ATBC was directly proportional to the ATBC content in the blends. The rheology showed that the plasticiser could obviously decrease the shear viscosity and improve the fluidity of the blends. PBA was therefore recognised as a novel plasticiser for enhancing the properties of PLA. In particular, as a biodegradable polymer, PBA, when used as a plasticiser in PLA, can enhance migration resistance for its proper molecular weight. Moreover, the area of application of plasticised PLA is broadened.


2019 ◽  
Vol 27 (4) ◽  
pp. 847-861 ◽  
Author(s):  
Chaniga Chuensangjun ◽  
Kyohei Kanomata ◽  
Takuya Kitaoka ◽  
Yusuf Chisti ◽  
Sarote Sirisansaneeyakul

Sign in / Sign up

Export Citation Format

Share Document