scholarly journals Multistage Tool Path Optimisation of Single-Point Incremental Forming Process

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6794
Author(s):  
Zhou Yan ◽  
Hany Hassanin ◽  
Mahmoud Ahmed El-Sayed ◽  
Hossam Mohamed Eldessouky ◽  
Joy Rizki Pangestu Djuansjah ◽  
...  

Single-point incremental forming (SPIF) is a flexible technology that can form a wide range of sheet metal products without the need for using punch and die sets. As a relatively cheap and die-less process, this technology is preferable for small and medium customised production. However, the SPIF technology has drawbacks, such as the geometrical inaccuracy and the thickness uniformity of the shaped part. This research aims to optimise the formed part geometric accuracy and reduce the processing time of a two-stage forming strategy of SPIF. Finite element analysis (FEA) was initially used and validated using experimental literature data. Furthermore, the design of experiments (DoE) statistical approach was used to optimise the proposed two-stage SPIF technique. The mass scaling technique was applied during the finite element analysis to minimise the computational time. The results showed that the step size during forming stage two significantly affected the geometrical accuracy of the part, whereas the forming depth during stage one was insignificant to the part quality. It was also revealed that the geometrical improvement had taken place along the base and the wall regions. However, the areas near the clamp system showed minor improvements. The optimised two-stage strategy successfully decreased both the geometrical inaccuracy and processing time. After optimisation, the average values of the geometrical deviation and forming time were reduced by 25% and 55.56%, respectively.

2016 ◽  
Vol 80 ◽  
pp. 14006 ◽  
Author(s):  
Manel Sbayti ◽  
Andrea Ghiotti ◽  
Riadh Bahloul ◽  
Hedi Belhadjsalah ◽  
Stefania Bruschi

2014 ◽  
Vol 900 ◽  
pp. 561-564 ◽  
Author(s):  
Xiao Bing Dang ◽  
Kai He ◽  
Shu Guo Wei ◽  
Jiu Hua Li ◽  
Ru Xu Du

Based on the thought of incremental forming, a new kind of sheet metal bending process has been described and investigated in this article. The software of the control system for the specific machine is developed combining motion control card and servo motors. Both single point and multi-points bending are taken into consideration from experimental and finite element analysis. Curved sheet and hyperbolic sheet metal are examined through experiments to extend the application for more smoothed and complicated curved sheet metal. The effectiveness of the process to deal with complex curved sheet metal is shown by all the experiments.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2029 ◽  
Author(s):  
Domingo Morales-Palma ◽  
Marcos Borrego ◽  
Andrés Martínez-Donaire ◽  
Gabriel Centeno ◽  
Carpóforo Vallellano

Single point incremental forming (SPIF) has been demonstrated to accomplish current trends and requirements in industry. Recent studies have applied this technology to hole-flanging by performing different forming strategies using one or multiple stages. In this work, an optimization procedure is proposed to balance fabrication time and thickness distribution along the produced flange in a two-stage variant. A detailed analytical, numerical and experimental investigation is carried out to provide, evaluate and corroborate the optimal strategy. The methodology begins by analysing the single-stage process to understand the deformation and failure mechanisms. Accordingly, a parametric two-stage SPIF strategy is proposed and evaluated by an explicit Finite Element Analysis to find the optimal parameters. The study is focused on AA7075-O sheets with different pre-cut hole diameters and considering a variety of forming tool radii. The study exposes the relevant role of the tool radius in finding the optimal hole-flanging process by the proposed two-stage SPIF.


2020 ◽  
Vol 10 (15) ◽  
pp. 5286
Author(s):  
Xiaolong Ke ◽  
Lei Qiu ◽  
Chunjin Wang ◽  
Zhenzhong Wang

The material removal depth in the pre-polishing stage of the precision optics is usually tens of microns to remove the subsurface damage and grinding marks left by the previous grinding process. This processing of the upstand edge takes a large part of the time at this stage. The purpose of this paper is to develop a method that can reduce the edge effect and largely shorten the processing time of the pre-polishing stage adopting the semirigid (SR) bonnet. The generation of the edge effect is presented based on the finite element analysis of the contact pressure at the edge zone firstly. Then, some experimentations on the edge effect are conducted, and the results proved that the SR bonnet tool can overhang the workpiece edge in the pre-polishing stage to reduce the width and height of the upstand edge to largely shorten the subsequent processing time of it. In addition, there exists a perfect overhang ratio, which generates the upstand edge with the smallest width and height, with no damage to the bonnet tool in the meantime. In addition, one combination of the pre-polishing parameters is concluded according to this method, which can be safely adopted in practical process.


2021 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Dong-Ha Lee ◽  
Seung-Joo Cha ◽  
Jeong-Dae Kim ◽  
Jeong-Hyeon Kim ◽  
Seul-Kee Kim ◽  
...  

Because environmentally-friendly fuels such as natural gas and hydrogen are primarily stored in the form of cryogenic liquids to enable efficient transportation, the demand for cryogenic fuel (LNG, LH) ships has been increasing as the primary carriers of environmentally-friendly fuels. In such ships, insulation systems must be used to prevent heat inflow to the tank to suppress the generation of boil-off gas (BOG). The presence of BOG can lead to an increased internal pressure, and thus, its control and prediction are key aspects in the design of fuel tanks. In this regard, although the thermal analysis of the phase change through a finite element analysis requires less computational time than that implemented through computational fluid dynamics, the former is relatively more error-prone. Therefore, in this study, a cryogenic fuel tank to be incorporated in ships was established, and the boil-off rate (BOR), measured considering liquid nitrogen, was compared with that obtained using the finite element method. Insulation material with a cubic structure was applied to the cylindrical tank to increase the insulation performance and space efficiency. To predict the BOR through finite element analysis, the effective thermal conductivity was calculated through an empirical correlation and applied to the designed fuel tank. The calculation was predicted to within 1% of the minimum error, and the internal fluid behavior was evaluated by analyzing the vertical temperature profile according to the filling ratio.


Sign in / Sign up

Export Citation Format

Share Document