scholarly journals High-Efficient Calculation Method for Sensitive PDGEs of Five-Axis Reconfigurable Machine Tool

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 84
Author(s):  
Zhanqun Song ◽  
Shuang Ding ◽  
Zhiwei Chen ◽  
Zhongwang Lu ◽  
Zhouzhou Wang

Sensitive geometric errors of a machine tool have significant influence on machining accuracy, and it is important to identify them. Complex modeling and analysis must be carried out to identify the sensitive geometric errors of a five-axis machine tool by using the traditional method. Once the configuration structure of the machine tools is reconstructed, repetitive error modeling and analysis are required, and the identification cycle of sensitive geometric errors is long. Therefore, this paper proposes a high-efficient calculation method for sensitive position-dependent geometric error (PDGEs) identification of a five-axis reconfigurable machine tool. According to the results of sensitive geometric errors of the RTTTR-type and TTTRR-type five-axis machine tools, the mapping expressions between sensitive PDGEs and the configuration structure of machine tools was established. In this method, sensitive PDGEs can be calculated directly according to the mapping expression, which eliminates the process of error modeling and analysis. Taking a RTTTR-type five-axis machine tool as an example, the sensitive PDGEs were calculated according to the presented mapping expressions without error modeling and analysis. A series of analysis points in the machining area were selected to compare the machining errors before and after sensitive PDGE compensation. The results show that this calculation method is accurate.

Author(s):  
Jennifer Creamer ◽  
Patrick M. Sammons ◽  
Douglas A. Bristow ◽  
Robert G. Landers ◽  
Philip L. Freeman ◽  
...  

This paper presents a geometric error compensation method for large five-axis machine tools. Compared to smaller machine tools, the longer axis travels and bigger structures of a large machine tool make them more susceptible to complicated, position-dependent geometric errors. The compensation method presented in this paper uses tool tip measurements recorded throughout the axis space to construct an explicit model of a machine tool's geometric errors from which a corresponding set of compensation tables are constructed. The measurements are taken using a laser tracker, permitting rapid error data gathering at most locations in the axis space. Two position-dependent geometric error models are considered in this paper. The first model utilizes a six degree-of-freedom kinematic error description at each axis. The second model is motivated by the structure of table compensation solutions and describes geometric errors as small perturbations to the axis commands. The parameters of both models are identified from the measurement data using a maximum likelihood estimator. Compensation tables are generated by projecting the error model onto the compensation space created by the compensation tables available in the machine tool controller. The first model provides a more intuitive accounting of simple geometric errors than the second; however, it also increases the complexity of projecting the errors onto compensation tables. Experimental results on a commercial five-axis machine tool are presented and analyzed. Despite significant differences in the machine tool error descriptions, both methods produce similar results, within the repeatability of the machine tool. Reasons for this result are discussed. Analysis of the models and compensation tables reveals significant complicated, and unexpected kinematic behavior in the experimental machine tool. A particular strength of the proposed methodology is the simultaneous generation of a complete set of compensation tables that accurately captures complicated kinematic errors independent of whether they arise from expected and unexpected sources.


Author(s):  
Xuan Luo ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Jie Li

5-Degree-of-freedom parallel kinematic machine tools are always attractive in manufacturing industry due to the ability of five-axis machining with high stiffness/mass ratio and flexibility. In this article, error modeling and sensitivity analysis of a novel 5-degree-of-freedom parallel kinematic machine tool are discussed for its accuracy issues. An error modeling method based on screw theory is applied to each limb, and then the error model of the parallel kinematic machine tool is established and the error mapping Jacobian matrix of 53 geometric errors is derived. Considering that geometric errors exert both impacts on value and direction of the end-effector’s pose error, a set of sensitivity indices and an easy routine for sensitivity analysis are proposed according to the error mapping Jacobian matrix. On this basis, 10 vital errors and 10 trivial errors are identified over the prescribed workspace. To validate the effects of sensitivity analysis, several numerical simulations of accuracy design are conducted, and three-dimensional model assemblies with relevant geometric errors are established as well. The simulations exhibit maximal −0.10% and 0.34% improvements of the position and orientation errors, respectively, after modifying 10 trivial errors, while minimal 65.56% and 55.17% improvements of the position and orientation errors, respectively, after modifying 10 vital errors. Besides the assembly reveals an output pose error of (0.0134 mm, 0.0020 rad) with only trivial errors, while (2.0338 mm, 0.0048 rad) with only vital errors. In consequence, both results of simulations and assemblies validate the correctness of the sensitivity analysis. Moreover, this procedure can be extended to any other parallel kinematic mechanisms easily.


2014 ◽  
Vol 552 ◽  
pp. 90-95
Author(s):  
Hong Ya Fu ◽  
Han Wang ◽  
Zhen Yu Han

Gravity has huge impact on the accuracy of heavy-duty machine tools. To investigate errors caused by gravity, it is essential to figure out the most influential factor. This paper presents a geometric error modeling for heavy-duty CNC machine tools. Regarding a machine tool as a rigid multi-body system (MBS), the geometric error model has been established by utilizing kinematics chain and homogeneous transfer matrix (HTM). By analyzing the Jacobi matrix, the influence of all the geometric error parameters has been calculated to find out the key geometric error that affect the accuracy most. It is revealed that gravity of beam and tool affect the accuracy of the machine tool most through the ANSYS simulation. It supports a theoretical basis for the further research on error compensation of the key component of a machine tool.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


Sign in / Sign up

Export Citation Format

Share Document