reconfigurable machine tool
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 2)

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 148
Author(s):  
Yongquan Wang ◽  
Guangpeng Zhang ◽  
Jiali Wang ◽  
Pan Liu ◽  
Nina Wang

The reconfigurable manufacturing system (RMS) is a new manufacturing technology and paradigm that resolves the contradictions regarding high efficiency, low cost and flexible production in the mass production of part families. Reconfigurable machine tools (RMTs) are the core components of RMSs. A new approach is proposed for the design of RMTs, which is closely related to the process planning of a given box-type part family. The concepts of the processing unit and the processing segment are presented; they are not only the basic elements of the processing plans of machined parts, but also closely related to the structural design of RMTs. Processing units created by processing features can be combined into various processing segments. All the processing units of one processing segment correspond to the machining operations performed by one RMT. By arranging the processing segments according to the processing sequence, a variety of feasible processing plans for a part can be obtained. Through analysis of the established similarity calculation model for processing plans, the most similar processing plans for the parts in a given part family can be determined and used for the structural design of RMTs. Therefore, the designed RMTs can achieve rapid conversion of processing functions with the least module replacement or adjustment to realize the production of the parts in the part family. Taking the production of a gearbox part family as an example, the validity of the presented method is verified.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vennan Sibanda ◽  
Khumbulani Mpofu ◽  
John Trimble

Purpose In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of products. These machines are limited when new product designs are introduced. The solution lies in developing responsive machines that can be adjusted or be changed functionally when these change requirements arise. These machines are reconfigurable machines which are becoming the new focus, as they rapidly respond to product variety and volume changes. A sheet metal working machine known as a reconfigurable guillotine shear and bending press machine (RGS&BPM) has been developed. The purpose of this paper is to present a methodology, function-oriented design approach (FODA), which was developed for the design of the RGS&BPM. Design/methodology/approach The design of the machine is based on the six principles of reconfigurable manufacturing systems (RMSs), namely, modularity, scalability integrability, convertibility, diagnosability and customisability. The methodology seeks to optimise the design process of the RGS&BPM through a design of modules that make up the machine, enable its conversion and reconfiguration. The FODA is focussed on function identification to select the operational function required. Two main functions are recognised for the machine, these being cutting and bending; hence, the design revolves around these two and reconfigurability. Findings The developed design methodology was tested in the design of a prototype for the reconfigurable guillotine shear and bending press machine. The prototype is currently being manufactured and will be subjected to functional tests once completed. This paper is being presented not only to present the methodology by to show and highlight its practical applicability, as the prototype manufacturers have been enthusiastic about this new approach. Research limitations/implications The research was limited to the design methodology for the RGS&BPM, the machine which has been designed to completion using this methodology, with prototype being manufactured. Practical implications This study presents critical steps and considerations in the development of reconfigurable machines. The main thrust being to explore the best possibility of developing the machines with dual functionality that will assist in availing the technology to manufacturer. As the machine has been development, the success of the design can be directly attributed to the FODA methodology, among other contributing factors. It also highlights the significance of the principles of RMS in reconfigurable machine design. Social implications The RGS&BM machine is an answer for the small-to-medium enterprises (SMEs), as the machine replaces two machines with one, and the methodology ensures its affordable design. It contributes immensely to the machine availability by eliminating trial and error approaches. Originality/value This study presents a new approach to the design of reconfigurable dual machines using principles of RMS. As the targeted market is the SME, it is not limited to that as any entrepreneur may use the machine to their advantage. The design methodology presented contributes to the body of knowledge in dual reconfigurable machine tool design.


2021 ◽  
Author(s):  
Zhengyi Xu ◽  
Fengfeng (Jeff) Xi ◽  
Lilan Liu ◽  
Li Chen

Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.


2021 ◽  
Author(s):  
Zhengyi Xu ◽  
Fengfeng (Jeff) Xi ◽  
Lilan Liu ◽  
Li Chen

Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.


2021 ◽  
Author(s):  
Zhengyi Xu ◽  
Fengfeng (Jeff) Xi ◽  
Lilan Liu ◽  
Li Chen

Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs). An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.


2021 ◽  
Author(s):  
Ambrish Gupta

There has been very little research in the field of Reconfigurable machine Tools (RMTs). None of the past research developed a method to design a set of RMT configurations required to machine a part-family. This thesis presents a novel method to determine the functional specifications of the RMT configurations required to machine a part-family. The method is developed by firstly designing the RMT required to machine a single part. Thereafter, this method is extrapolated to suit the problem of a part-family. To design the RMTs for a single part, firstly, the part is decomposed into manufacturing features. Next, a novel method is developed to cluster the features. Each of these feature-clusters corresponds to a single RMT configuration. Based on the machining requirements of these RMT configurations, the modules are designed. These modules are assembled to form the final RMTs. The method is demonstrated by applying it to an example part.


2021 ◽  
Author(s):  
Ambrish Gupta

There has been very little research in the field of Reconfigurable machine Tools (RMTs). None of the past research developed a method to design a set of RMT configurations required to machine a part-family. This thesis presents a novel method to determine the functional specifications of the RMT configurations required to machine a part-family. The method is developed by firstly designing the RMT required to machine a single part. Thereafter, this method is extrapolated to suit the problem of a part-family. To design the RMTs for a single part, firstly, the part is decomposed into manufacturing features. Next, a novel method is developed to cluster the features. Each of these feature-clusters corresponds to a single RMT configuration. Based on the machining requirements of these RMT configurations, the modules are designed. These modules are assembled to form the final RMTs. The method is demonstrated by applying it to an example part.


2021 ◽  
Vol 11 (10) ◽  
pp. 4446
Author(s):  
Emilia Brad ◽  
Stelian Brad

In the paradigm of industry 4.0, manufacturing enterprises need a high level of agility to adapt fast and with low costs to small batches of diversified products. They also need to reduce the environmental impact and adopt the paradigm of the circular economy. In the configuration space defined by this duality, manufacturing systems must embed a high level of reconfigurability at the level of their equipment. Finding the most appropriate concept of each reconfigurable equipment that composes an eco-smart manufacturing system is challenging because every system is unique in the context of an enterprise’s business model and technological focus. To reduce the entropy and to minimize the loss function in the design process of reconfigurable equipment, an evolutionary algorithm is proposed in this paper. It combines the particle swarm optimization (PSO) method with the theory of inventive problem-solving (TRIZ) to systematically guide the creative potential of design engineers towards the definition of the optimal concept over equipment’s lifecycle: what and when you need, no more, no less. The algorithm reduces the number of iterations in designing the optimal solution. An example for configuration design of a reconfigurable machine tool with adjustable functionality is included to demonstrate the effectiveness of the proposed algorithm.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 84
Author(s):  
Zhanqun Song ◽  
Shuang Ding ◽  
Zhiwei Chen ◽  
Zhongwang Lu ◽  
Zhouzhou Wang

Sensitive geometric errors of a machine tool have significant influence on machining accuracy, and it is important to identify them. Complex modeling and analysis must be carried out to identify the sensitive geometric errors of a five-axis machine tool by using the traditional method. Once the configuration structure of the machine tools is reconstructed, repetitive error modeling and analysis are required, and the identification cycle of sensitive geometric errors is long. Therefore, this paper proposes a high-efficient calculation method for sensitive position-dependent geometric error (PDGEs) identification of a five-axis reconfigurable machine tool. According to the results of sensitive geometric errors of the RTTTR-type and TTTRR-type five-axis machine tools, the mapping expressions between sensitive PDGEs and the configuration structure of machine tools was established. In this method, sensitive PDGEs can be calculated directly according to the mapping expression, which eliminates the process of error modeling and analysis. Taking a RTTTR-type five-axis machine tool as an example, the sensitive PDGEs were calculated according to the presented mapping expressions without error modeling and analysis. A series of analysis points in the machining area were selected to compare the machining errors before and after sensitive PDGE compensation. The results show that this calculation method is accurate.


Sign in / Sign up

Export Citation Format

Share Document