Sensitivity Analysis of Geometric Errors for Five-Axis CNC Machine Tool Based on Multi-Body System Theory

2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.

2011 ◽  
Vol 108 ◽  
pp. 61-66 ◽  
Author(s):  
Qiang Cheng ◽  
Dong Sheng Xuan ◽  
Jie Sun ◽  
Zhi Feng Liu

Parts of geometric error coupled into space error is the main reason that affects machining accuracy of machine tools; therefore, how to determine the effect of geometric error to the machining accuracy and then assigning geometry precision of parts economically is a difficult problem in machine tool designing process. Therefore, based on multi-body system theory, a sensitivity analysis method of geometric error is put forward in this paper. Let’s take precision vertical machining center for an example. Firstly, an accuracy model of machining center is established based on multi-body system theory, and with 21 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The example analysis shows that the proposed method can effectively identify the main geometric errors of parts that have great influence on volumetric error of machine tool, and thus provides important theoretical basis to improve the accuracy of machine tool economically.


2013 ◽  
Vol 420 ◽  
pp. 85-91 ◽  
Author(s):  
Li Gang Cai ◽  
Qiu Nan Feng ◽  
Qiang Cheng ◽  
Pei Hua Gu ◽  
Cui Zhang

The precision model of the 5-axis CNC machine tool can be built up based on the theory of kinematics for multi-body system (MBS). And then based on the precision model, the sensitivity analysis established with matrix differential is a method of identifying geometric error parameters for machine tool. And the geometric error factors of major parts that have relatively significant influence on comprehensive spatial error of the machine tool are identified. Finally, important theoretical basis for improving the titanium alloy Five-axis CNC machining center reasonably and for the error compensation can be provided.


2012 ◽  
Vol 152-154 ◽  
pp. 788-795 ◽  
Author(s):  
Fang Yu Pan ◽  
Ming Li ◽  
Chang Kai Xu

To improve the machining precision and reduce the geometric errors for 4-axis machine tool, multi-body system theory is introduced . Based on of the theory, ,through analysing the matrix of the position transformation and the displacement transformation, a model for the machine tool is put forth. By the laser Doppler displacement measurement, test is done and value of the errors is achieved which will benefit for later compensation.


Author(s):  
Qiang Cheng ◽  
Ziling Zhang ◽  
Guojun Zhang ◽  
Peihua Gu ◽  
Ligang Cai

Machining accuracy of a machine tool is influenced by geometric errors produced by each part and component. Different errors have varying influence on the machining accuracy of a tool. The aim of this study is to optimize errors to get a desired performance for a numerical control machine tool. Applying multi-body system theory, a volumetric error model was constructed to track and compensate effects of errors during operation of the machine, and to relate the functional specifications on volumetric accuracy to the permissible errors on the joints and links of the machine. Error sensitivity analysis was used to identify the influence of different errors (especially the errors which have large influences) on volumetric error. Based on First Order and Second Moment theory, an error allocation approach was developed to optimize allocation of manufacturing and assembly tolerances along with specifying the operating conditions to determine the optimal level of these errors so that the cost of controlling them and the cost of failure to meet the specifications is minimized. The approach developed was implemented in software and an example of the geometric errors budgeting for a five-axis machine was discussed. It is identified that the different optimal standard deviations reflect the cost-weighted influences of the respective parameters in the equations of the functional requirements. This study suggests that it is possible to determine the coupling relationships between these errors and optimize the allowable error budgeting between these sources.


2013 ◽  
Vol 690-693 ◽  
pp. 3244-3248
Author(s):  
Gui Qiang Liang ◽  
Ai Rong Zhang ◽  
Ting Ting Guo

In order to improve machining accuracy of machining center, the effect of geometric error on machining accuracy was researched by multi-body system theory. Taking a vertical machining center as example, topological structure of the machining center was described by lower body array. Geometric errors of the bodies in the multi-body system were expressed by homogeneous coordinate transformation. Error model for machining accuracy was deduced and geometric errors having great influence on the machining accuracy were identified. The research results show that, straightness errors and linear displacement errors in three directions have direct influence on machining accuracy, and the effect on machining accuracy caused by angle errors are related to the dimensions of the machining center and travel distance of the three axes. The research results provide guidance for analysis on sensitivity of geometric errors.


2013 ◽  
Vol 694-697 ◽  
pp. 1842-1845
Author(s):  
Gui Qiang Liang ◽  
Jun Xian Zhang ◽  
Fei Fei Zhao

The effect of geometric error on machining accuracy was researched by multi-body system theory, as well as homogeneous coordinate transformation method. Taking a vertical machining center as example, topological structure of the machine tool was described by lower body array. Lower body array of the machining center, motion freedom between adjacent bodies and geometric errors of the vertical machining center were analyzed. Geometric errors of the bodies in the multi-body system were expressed by homogeneous coordinate transformation. Error model for machining accuracy was deduced and geometric errors having influence on the machining accuracy were identified. The research results provide guidance for analyze of geometric errors on machining accuracy.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Shijie Guo ◽  
Dongsheng Zhang ◽  
Yang Xi

A quantitative analysis to identify the key geometric error elements and their coupling is the prerequisite and foundation for improving the precision of machine tools. The purpose of this paper is to identify key geometric error elements and compensate for geometric errors accordingly. The geometric error model of three-axis machine tool is built on the basis of multibody system theory; and the quantitative global sensitivity analysis (GSA) model of geometric error elements is constructed by using extended Fourier amplitude sensitivity test method. The crucial geometric errors are identified; and stochastic characteristics of geometric errors are taken into consideration in the formulation of building up the compensation strategy. The validity of geometric error compensation based on sensitivity analysis is verified on a high-precision three-axis machine tool with open CNC system. The experimental results show that the average compensation rates along theX,Y, andZdirections are 59.8%, 65.5%, and 73.5%, respectively. The methods of sensitivity analysis and geometric errors compensation presented in this paper are suitable for identifying the key geometric errors and improving the precision of CNC machine tools effectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Qiang Cheng ◽  
Can Wu ◽  
Peihua Gu ◽  
Wenfen Chang ◽  
Dongsheng Xuan

Traditional approaches about error modeling and analysis of machine tool few consider the probability characteristics of the geometric error and volumetric error systematically. However, the individual geometric error measured at different points is variational and stochastic, and therefore the resultant volumetric error is aslo stochastic and uncertain. In order to address the stochastic characteristic of the volumetric error for multiaxis machine tool, a new probability analysis mathematical model of volumetric error is proposed in this paper. According to multibody system theory, a mean value analysis model for volumetric error is established with consideration of geometric errors. The probability characteristics of geometric errors are obtained by statistical analysis to the measured sample data. Based on probability statistics and stochastic process theory, the variance analysis model of volumetric error is established in matrix, which can avoid the complex mathematics operations during the direct differential. A four-axis horizontal machining center is selected as an illustration example. The analysis results can reveal the stochastic characteristic of volumetric error and are also helpful to make full use of the best workspace to reduce the random uncertainty of the volumetric error and improve the machining accuracy.


2013 ◽  
Vol 418 ◽  
pp. 180-186
Author(s):  
Li Gang Cai ◽  
Cui Zhang ◽  
Qiang Cheng ◽  
Pei Hua Gu ◽  
Hong Ying Wang

Balancing the cost and processing precision of machine tool by the method of error allocation without affecting the machining performances is a critical problem in the Machine tool industry. In this paper, a new accuracy allocation method for multi-axis machine tool based on Multi-body system theory, manufacturing and quality loss costs and relationship between tolerances and accuracy parameters of components is proposed. This optimization method is performed with Non-Dominated Sorting Genetic Algorithm II algorithm using Isight and Matlab software. A three-axis vertical machine tool is taken as an example to demonstrate the method, and the optimization results show that the accuracy allocation method proposed is feasible in the optimization of geometric errors on the premise of satisfying machining accuracy requirements.


Sign in / Sign up

Export Citation Format

Share Document