scholarly journals Ciphertext-Policy Attribute-Based Encryption for Cloud Storage: Toward Data Privacy and Authentication in AI-Enabled IoT System

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
P. Chinnasamy ◽  
P. Deepalakshmi ◽  
Ashit Kumar Dutta ◽  
Jinsang You ◽  
Gyanendra Prasad Joshi

People can store their data on servers in cloud computing and allow public users to access data via data centers. One of the most difficult tasks is to provide security for the access policy of data, which is also needed to be stored at cloud servers. The access structure (policy) itself may reveal partial information about what the ciphertext contains. To provide security for the access policy of data, a number of encryption schemes are available. Among these, CP-ABE (Ciphertext-Policy Attribute-Based Encryption) scheme is very significant because it helps to protect, broadcast, and control the access of information. The access policy that is sent as plaintext in the existing CP-ABE scheme along with a ciphertext may leak user privacy and data privacy. To resolve this problem, we hereby introduce a new technique, which hides the access policy using a hashing algorithm and provides security against insider attack using a signature verification scheme. The proposed system is compared with existing CP-ABE schemes in terms of computation and expressive policies. In addition, we can test the functioning of any access control that could be implemented in the Internet of Things (IoT). Additionally, security against indistinguishable adaptive chosen ciphertext attacks is also analyzed for the proposed work.

2021 ◽  
Vol 17 (3) ◽  
pp. 155014772199961
Author(s):  
Yuting Zuo ◽  
Zhaozhe Kang ◽  
Jian Xu ◽  
Zhide Chen

It is the most important and challenging problem to share the data safely in cloud computing. Some so-called trusted third parties may also infringe users’ data privacy. It is an urgent problem for data owners to share data safely with the designated users rather than the third party or other users. Traditional encryption schemes utilize different keys to produce multiple encrypted copies of the same data for users. It is no longer applicable for cloud data sharing security. Attribute-based encryption can solve above problems, but it needs to rely on trusted third parties to protect the users’ privacy. In this article, in order to address the above problems, we propose a blockchain-based ciphertext-policy attribute-based encryption scheme for cloud data secure sharing without relying on any trusted third parties. Blockchain-based ciphertext-policy attribute-based encryption scheme can protect the rights and security of data owner. Compared with existing cloud security schemes, the proposed scheme has more advantages in terms of the six aspects: (1) data owners have the authority to decide who can decrypt the data; (2) the operations of users are retained permanently, and all records are tamper-proof; (3) our proposed scheme has the characteristic of “one-to-many” encryption, and data is encrypted only once; (4) our scheme does not rely on any trusted third party; (5) in terms of the discrete logarithm problem and decisional q parallel-bilinear Diffie–Hellman exponent problem, we prove that our proposed scheme is secure; and (6) experiment shows that our proposed scheme is more efficient than the comparative scheme.


Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


2020 ◽  
Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

Abstract Smart city, as a promising technical tendency, greatly facilitates citizens and generates innumerable data, some of which is very private and sensitive. To protect data from unauthorized users, ciphertext-policy attribute-based encryption (CP-ABE) enables data owner to specify an access policy on encrypted data. However, There are two drawbacks in traditional CP-ABE schemes. On the one hand, the access policy is revealed in the ciphertext so that sensitive information contained in the policy is exposed to anyone who obtains the ciphertext. For example, both the plaintext and access policy of an encrypted recruitment may reveal the company's future development plan. On the other hand, the decryption time scales linearly with the complexity of the access, which makes it unsuitable for resource-limited end users. In this paper, we propose a CP-ABE scheme with hidden sensitive policy for recruitment in smart city. Specifically, we introduce a new security model chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and fully hidden, only if user's attributes satisfy the public policy, it's possible for him/her to learn about the hidden policy, otherwise he/she cannot get any information (attribute name and its values) of it. When the user satisfies both access policies, he/she can obtain and decrypt the ciphertext. Compared with other CP-ABE schemes, our scheme supports a more expressive access policy, since the access policy of their schemes only work on the ``AND-gate'' structure. In addition, intelligent devices spread all over the smart city, so partial computational overhead of encryption of our scheme can be outsourced to these devices as fog nodes, while most part overhead in the decryption process is outsourced to the cloud. Therefore, our scheme is more applicable to end users with resource-constrained mobile devices. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.


2016 ◽  
Vol 78 (6-3) ◽  
Author(s):  
Samsul Huda ◽  
Nurul Fahmi ◽  
Amang Sudarsono ◽  
M. Udin Harun Al Rasyid

In Internet of Things (IoT) era, The limitation storage on Wireless Sensor Network (WSN) can be solved by synchronized data sensors from the gateway node to the data center server. Data in the data center can be remotely accessed by the user at any time and anywhere from end user devices such as PCs, laptop PCs, and smart phones., and data should be accessed securely. The Only legitimated user can access the data sensor from an environmental health data center. CP-ABE (Ciphertext-Policy Attribute-Based Encryption) is becoming a robust cryptographic scheme solution to this issue. To enable a secure data sensor sharing and access on an environmental health data center, we propose a secure system model using CP-ABE which ensures confidentiality, integrity, and user privacy features. Experimental results prove that the implementation of CP-ABE does not overload the system.


Cloud computing is becoming an emerging paradigm to tenuously store and Share the data for users. A personal health record (PHR) could be a health record during which the patient keeps health data and other information associated with the patient's care. There is a great challenge of privacy and confidentiality once patient shares their records of the commercial cloud servers, that results in less secure. In view of the above, this paper proposes a technique which combines attribute based access control model with an expansion of ciphertext-policy attribute-set-based encryption (ASBE) and Hierarchical Attribute-based Encryption allows to store the sanitized data securely in the cloud system and also the original data may be retrieved from the sanitized data with the help of the key provided by the data owner. The experimentation is carried out on the data sets and it provides superior performance efficient and accurate results. PHR system categorizes the users to multi security domains so as to scale back key management quality


2019 ◽  
Vol 13 (4) ◽  
pp. 12-27
Author(s):  
G. Sravan Kumar ◽  
A. Sri Krishna

Cloud data storage environments allow the data providers to store and share large amounts of datasets generated from various resources. However, outsourcing private data to a cloud server is insecure without an efficient access control strategy. Thus, it is important to protect the data and privacy of user with a fine-grained access control policy. In this article, a Bloom Filter-based Ciphertext-Policy Attribute-Based Encryption (BF-CP-ABE) technique is presented to provide data security to cloud datasets with a Linear Secret Sharing Structure (LSSS) access policy. This fine-grained access control scheme hides the whole attribute set in the ciphertext, whereas in previous CP-ABE methods, the attributes are partially hidden in the ciphertext which in turn leaks private information about the user. Since the attribute set of the BF-CP-ABE technique is hidden, bloom filters are used to identify the authorized users during data decryption. The BF-CP-ABE technique is designed to be selective secure under an Indistinguishable-Chosen Plaintext attack and the simulation results show that the communication overhead is significantly reduced with the adopted LSSS access policy.


2020 ◽  
Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

Abstract Smart city greatly facilitates citizens and generates innumerable data, some of which is very private and sensitive. To protect data from unauthorized users, ciphertext-policy attribute-based encryption (CP-ABE) enables data owner to specify an access policy on encrypted data. However, There are two drawbacks in traditional CP-ABE schemes. On the one hand, the access policy is revealed in the ciphertext so that sensitive information contained in the policy is exposed to anyone who obtains the ciphertext. For example, both the plaintext and access policy of an encrypted recruitment may reveal the company’s future development plan. On the other hand, the decryption time scales linearly with the complexity of the access, which makes it unsuitable for resource-limited end users. In this paper, we propose a CP-ABE scheme with hidden sensitive policy from keyword search (KS) techniques in smart city. Specifically, we introduce a new security model chosen sensitive policy security : two access policies embedded in the ciphertext, one is public and the other is sensitive and fully hidden, only if user’s attributes satisfy the public policy, it’s possible for him/her to learn about the hidden policy, otherwise he/she cannot get any information (attribute name and its values) of it. When the user satisfies both access policies, he/she can obtain and decrypt the ciphertext. Compared with other CP-ABE schemes, our scheme exploits KS techniques to achieve more expressive and efficient, while the access policy of their schemes only work on the “AND-gate” structure or their ciphertext size or decryption time maybe super-polynomial. In addition, intelligent devices spread all over the smart city, so partial computational overhead of encryption of our scheme can be outsourced to these devices as fog nodes, while most part overhead in the decryption process is outsourced to the cloud.Therefore, our scheme is more applicable to end users with resource-constrained mobile devices. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.


Sign in / Sign up

Export Citation Format

Share Document