scholarly journals Analytical Solution of Generalized Space-Time Fractional Cable Equation

Mathematics ◽  
2015 ◽  
Vol 3 (2) ◽  
pp. 153-170 ◽  
Author(s):  
Ram Saxena ◽  
Zivorad Tomovski ◽  
Trifce Sandev
Author(s):  
Avinash K. Mittal ◽  
Lokendra K. Balyan ◽  
Manoj K. Panda ◽  
Parnika Shrivastava ◽  
Harvindra Singh

Author(s):  
F. Liu ◽  
Q. Yang ◽  
I. Turner

The cable equation is one the most fundamental equations for modeling neuronal dynamics. Cable equations with fractional order temporal operators have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper we consider the following fractional cable equation involving two fractional temporal derivatives: ∂u(x,t)∂t=0Dt1−γ1κ∂2u(x,t)∂x2−μ02Dt1−γ2u(x,t)+f(x,t), where 0 < γ1,γ2 < 1, κ > 0, and μ02 are constants, and 0Dt1−γu(x,t) is the Rieman-Liouville fractional partial derivative of order 1 − γ. Two new implicit numerical methods with convergence order O(τ + h2) and O(τ2 + h2) for the fractional cable equation are proposed respectively, where τ and h are the time and space step sizes. The stability and convergence of these methods are investigated using the energy method. Finally, numerical results are given to demonstrate the effectiveness of both implicit numerical methods. These techniques can also be applied to solve other types of anomalous subdiffusion problems.


2015 ◽  
Vol 10 (03) ◽  
pp. 175-185
Author(s):  
Juan M. Romero ◽  
Carlos Trenado

Progress towards detailed characterization of structural and biophysical properties of dendrites emphasizes the importance of finding analytical solutions for more realistic dendrite models with circular cross-section and varying diameter. In this regard, we employ symmetry methods and the passive cable theory to deduce a generalized analytical solution for electric propagation in a family of tapering dendrites. In particular, we study the effect of such tapering geometries on the obtained electric voltage. Simulations using the deduced analytical solution indicate that for a subfamily of tapering profiles neural integration is better than in the stereotypical profile given by a cylinder.


Sign in / Sign up

Export Citation Format

Share Document