scholarly journals Extending the Usage of Newton’s Method with Applications to the Solution of Bratu’s Equation

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 274
Author(s):  
Ioannis Argyros ◽  
Daniel González

We use Newton’s method to solve previously unsolved problems, expanding the applicability of the method. To achieve this, we used the idea of restricted domains which allows for tighter Lipschitz constants than previously seen, this in turn led to a tighter convergence analysis. The new developments were obtained using special cases of functions which had been used in earlier works. Numerical examples are used to illustrate the superiority of the new results.

Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 299 ◽  
Author(s):  
Ioannis Argyros ◽  
Á. Magreñán ◽  
Lara Orcos ◽  
Íñigo Sarría

The aim of this paper is to present a new semi-local convergence analysis for Newton’s method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies and our new idea of restricted convergence domains, we extend the applicability of Newton’s method as follows: The convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. These advantages are obtained using the same information as before, since new Lipschitz constant are tighter and special cases of the ones used before. Numerical examples and applications are used to test favorable the theoretical results to earlier ones.


2012 ◽  
Vol 220-223 ◽  
pp. 2658-2661
Author(s):  
Zhong Yong Hu ◽  
Liang Fang ◽  
Lian Zhong Li

We present a new modified Newton's method with third-order convergence and compare it with the Jarratt method, which is of fourth-order. Based on this new method, we obtain a family of Newton-type methods, which converge cubically. Numerical examples show that the presented method can compete with Newton's method and other known third-order modifications of Newton's method.


2014 ◽  
Vol 07 (01) ◽  
pp. 1450007
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a semilocal convergence analysis of Newton's method for sections on Riemannian manifolds. Using the notion of a 2-piece L-average Lipschitz condition introduced in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] in combination with the weaker center 2-piece L1-average Lipschitz condition given by us in this paper, we provide a tighter convergence analysis than the one given in [C. Li and J. H. Wang, Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complexity24 (2008) 423–451] which in turn has improved the works in earlier studies such as [R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal.22 (2002) 359–390; F. Alvarez, J. Bolte and J. Munier, A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math.8 (2008) 197–226; J. P. Dedieu, P. Priouret and G. Malajovich, Newton's method on Riemannian manifolds: Covariant α-theory, IMA J. Numer. Anal.23 (2003) 395–419].


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 463 ◽  
Author(s):  
Ioannis K. Argyros ◽  
Ángel Alberto Magreñán ◽  
Lara Orcos ◽  
Íñigo Sarría

Under the hypotheses that a function and its Fréchet derivative satisfy some generalized Newton–Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton’s method, and of the uniqueness ball for the solution of the equations, are given for Banach space-valued operators. Some of the existing results are improved with the advantages of larger convergence region, tighter error estimates on the distances involved, and at-least-as-precise information on the location of the solution. These advantages are obtained using the same functions and Lipschitz constants as in earlier studies. Numerical examples are used to test the theoretical results.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 103 ◽  
Author(s):  
Cristina Amorós ◽  
Ioannis K. Argyros ◽  
Daniel González ◽  
Ángel Alberto Magreñán ◽  
Samundra Regmi ◽  
...  

There is a need to extend the convergence domain of iterative methods for computing a locally unique solution of Banach space valued operator equations. This is because the domain is small in general, limiting the applicability of the methods. The new idea involves the construction of a tighter set than the ones used before also containing the iterates leading to at least as tight Lipschitz parameters and consequently a finer local as well as a semi-local convergence analysis. We used Newton’s method to demonstrate our technique. However, our technique can be used to extend the applicability of other methods too in an analogous manner. In particular, the new information related to the location of the solution improves the one in previous studies. This work also includes numerical examples that validate the proven results.


2015 ◽  
Vol 34 (2) ◽  
pp. 197-211
Author(s):  
D. Sbibih ◽  
Abdelhafid Serghini ◽  
A. Tijini ◽  
A. Zidna

In this paper, we describe an iterative method for approximating asimple zero $z$ of a real defined function. This method is aessentially based on the idea to extend Newton's method to be theinverse quadratic interpolation. We prove that for a sufficientlysmooth function $f$ in a neighborhood of $z$ the order of theconvergence is quartic. Using Mathematica with its high precisioncompatibility, we present some numerical examples to confirm thetheoretical results and to compare our method with the others givenin the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


2021 ◽  
Vol 4 (1) ◽  
pp. 34-43
Author(s):  
Samundra Regmi ◽  
◽  
Ioannis K. Argyros ◽  
Santhosh George ◽  
◽  
...  

In this study a convergence analysis for a fast multi-step Chebyshe-Halley-type method for solving nonlinear equations involving Banach space valued operator is presented. We introduce a more precise convergence region containing the iterates leading to tighter Lipschitz constants and functions. This way advantages are obtained in both the local as well as the semi-local convergence case under the same computational cost such as: extended convergence domain, tighter error bounds on the distances involved and a more precise information on the location of the solution. The new technique can be used to extend the applicability of other iterative methods. The numerical examples further validate the theoretical results.


2019 ◽  
Vol 17 (01) ◽  
pp. 1843005 ◽  
Author(s):  
Rahmatjan Imin ◽  
Ahmatjan Iminjan

In this paper, based on the basic principle of the SPH method’s kernel approximation, a new kernel approximation was constructed to compute first-order derivative through Taylor series expansion. Derivative in Newton’s method was replaced to propose a new SPH iterative method for solving nonlinear equations. The advantage of this method is that it does not require any evaluation of derivatives, which overcame the shortcoming of Newton’s method. Quadratic convergence of new method was proved and a variety of numerical examples were given to illustrate that the method has the same computational efficiency as Newton’s method.


Sign in / Sign up

Export Citation Format

Share Document