scholarly journals Coefficient Inequalities of Functions Associated with Petal Type Domains

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 298 ◽  
Author(s):  
Sarfraz Malik ◽  
Shahid Mahmood ◽  
Mohsan Raza ◽  
Sumbal Farman ◽  
Saira Zainab

In the theory of analytic and univalent functions, coefficients of functions’ Taylor series representation and their related functional inequalities are of major interest and how they estimate functions’ growth in their specified domains. One of the important and useful functional inequalities is the Fekete-Szegö inequality. In this work, we aim to analyze the Fekete-Szegö functional and to find its upper bound for certain analytic functions which give parabolic and petal type regions as image domains. Coefficient inequalities and the Fekete-Szegö inequality of inverse functions to these certain analytic functions are also established in this work.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 88 ◽  
Author(s):  
Sarfraz Malik ◽  
Shahid Mahmood ◽  
Mohsan Raza ◽  
Sumbal Farman ◽  
Saira Zainab ◽  
...  

In this work, our focus is to study the Fekete-Szegö functional in a different and innovative manner, and to do this we find its upper bound for certain analytic functions which give hyperbolic regions as image domain. The upper bounds obtained in this paper give refinement of already known results. Moreover, we extend our work by calculating similar problems for the inverse functions of these certain analytic functions for the sake of completeness.



2018 ◽  
Vol 37 (4) ◽  
pp. 83-95
Author(s):  
Trailokya Panigrahi ◽  
Janusz Sokól

In this paper, a new subclass of analytic functions ML_{\lambda}^{*}  associated with the right half of the lemniscate of Bernoulli is introduced. The sharp upper bound for the Fekete-Szego functional |a_{3}-\mu a_{2}^{2}|  for both real and complex \mu are considered. Further, the sharp upper bound to the second Hankel determinant |H_{2}(1)| for the function f in the class ML_{\lambda}^{*} using Toeplitz determinant is studied. Relevances of the main results are also briefly indicated.



2010 ◽  
Vol 60 (1) ◽  
Author(s):  
Waggas Atshan

AbstractIn this paper, we introduce a new class W(a, b, c, γ, β) which consists of analytic and univalent functions with negative coefficients in the unit disc defined by Hohlov operator, we obtain distortion theorem using fractional calculus techniques for this class. Also coefficient inequalities and some results for this class are obtained.



Filomat ◽  
2012 ◽  
Vol 26 (1) ◽  
pp. 153-163 ◽  
Author(s):  
Teodor Bulboacă ◽  
Mohamed Aouf ◽  
Rabha El-Ashwah

Using the new linear operator Lm(?,l)f(z) = 1/z + ??k=1(l/l+ ?k)m akzk-1, f ? ?, where l > 0, ? ? 0, and m ? N0 = N ? {0}, we introduce two subclasses of meromorphic analytic functions, and we investigate several convolution properties, coefficient inequalities, and inclusion relations for these classes.



Author(s):  
MD FIROZ ALI ◽  
VASUDEVARAO ALLU ◽  
HIROSHI YANAGIHARA

Abstract We extend our study of variability regions, Ali et al. [‘An application of Schur algorithm to variability regions of certain analytic functions–I’, Comput. Methods Funct. Theory, to appear] from convex domains to starlike domains. Let $\mathcal {CV}(\Omega )$ be the class of analytic functions f in ${\mathbb D}$ with $f(0)=f'(0)-1=0$ satisfying $1+zf''(z)/f'(z) \in {\Omega }$ . As an application of the main result, we determine the variability region of $\log f'(z_0)$ when f ranges over $\mathcal {CV}(\Omega )$ . By choosing a particular $\Omega $ , we obtain the precise variability regions of $\log f'(z_0)$ for some well-known subclasses of analytic and univalent functions.



2019 ◽  
Vol 109 (2) ◽  
pp. 230-249 ◽  
Author(s):  
SAMINATHAN PONNUSAMY ◽  
NAVNEET LAL SHARMA ◽  
KARL-JOACHIM WIRTHS

Let${\mathcal{S}}$be the family of analytic and univalent functions$f$in the unit disk$\mathbb{D}$with the normalization$f(0)=f^{\prime }(0)-1=0$, and let$\unicode[STIX]{x1D6FE}_{n}(f)=\unicode[STIX]{x1D6FE}_{n}$denote the logarithmic coefficients of$f\in {\mathcal{S}}$. In this paper we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families${\mathcal{F}}(c)$and${\mathcal{G}}(c)$of functions$f\in {\mathcal{S}}$defined by$$\begin{eqnarray}\text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)>1-{\displaystyle \frac{c}{2}}\quad \text{and}\quad \text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)<1+{\displaystyle \frac{c}{2}},\quad z\in \mathbb{D},\end{eqnarray}$$for some$c\in (0,3]$and$c\in (0,1]$, respectively. We obtain the sharp upper bound for$|\unicode[STIX]{x1D6FE}_{n}|$when$n=1,2,3$and$f$belongs to the classes${\mathcal{F}}(c)$and${\mathcal{G}}(c)$, respectively. The paper concludes with the following two conjectures:∙If$f\in {\mathcal{F}}(-1/2)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq 1/n(1-(1/2^{n+1}))$for$n\geq 1$, and$$\begin{eqnarray}\mathop{\sum }_{n=1}^{\infty }|\unicode[STIX]{x1D6FE}_{n}|^{2}\leq {\displaystyle \frac{\unicode[STIX]{x1D70B}^{2}}{6}}+{\displaystyle \frac{1}{4}}~\text{Li}_{2}\biggl({\displaystyle \frac{1}{4}}\biggr)-\text{Li}_{2}\biggl({\displaystyle \frac{1}{2}}\biggr),\end{eqnarray}$$where$\text{Li}_{2}(x)$denotes the dilogarithm function.∙If$f\in {\mathcal{G}}(c)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq c/2n(n+1)$for$n\geq 1$.



Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 306 ◽  
Author(s):  
Suhila Elhaddad ◽  
Maslina Darus

Recently, a number of features and properties of interest for a range of bi-univalent and univalent analytic functions have been explored through systematic study, e.g., coefficient inequalities and coefficient bounds. This study examines S q δ ( ϑ , η , ρ , ν ; ψ ) as a novel general subclass of Σ which comprises normalized analytic functions, as well as bi-univalent functions within Δ as an open unit disk. The study locates estimates for the | a 2 | and | a 3 | Taylor–Maclaurin coefficients in functions of the class which is considered. Additionally, links with a number of previously established findings are presented.



2010 ◽  
Vol 2010 ◽  
pp. 1-11
Author(s):  
Ma'moun Harayzeh Al-Abbadi ◽  
Maslina Darus

M. H. Al-Abbadi and M. Darus (2009) recently introduced a new generalized derivative operatorμλ1,λ2n,m, which generalized many well-known operators studied earlier by many different authors. In this present paper, we shall investigate a new subclass of analytic functions in the open unit diskU={z∈ℂ:|z|<1}which is defined by new generalized derivative operator. Some results on coefficient inequalities, growth and distortion theorems, closure theorems, and extreme points of analytic functions belonging to the subclass are obtained.



2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Sheng Liu ◽  
Jun-Feng Xu ◽  
Ming Yang

In this present investigation, we first give a survey of the work done so far in this area of Hankel determinant for univalent functions. Then the upper bounds of the second Hankel determinant|a2a4−a32|for functions belonging to the subclassesS(α,β),K(α,β),Ss∗(α,β), andKs(α,β)of analytic functions are studied. Some of the results, presented in this paper, would extend the corresponding results of earlier authors.



Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2837-2849
Author(s):  
Zainab Esa ◽  
H.M. Srivastava ◽  
Adem Kılıçman ◽  
Rabha Ibrahim

In this paper, by making use of a certain family of fractional derivative operators in the complex domain, we introduce and investigate a new subclass P?,?(k,?,?) of analytic and univalent functions in the open unit disk U. In particular, for functions in the class P?,?(k,?,?), we derive sufficient coefficient inequalities and coefficient estimates, distortion theorems involving the above-mentioned fractional derivative operators, and the radii of starlikeness and convexity. In addition, some applications of functions in the class P?,?(k,?,?) are also pointed out.



Sign in / Sign up

Export Citation Format

Share Document