dilogarithm function
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 5 (1) ◽  
pp. 337-352
Author(s):  
Masato Kobayashi ◽  

We show new integral representations for dilogarithm and trilogarithm functions on the unit interval. As a consequence, we also prove (1) new integral representations for Apéry, Catalan constants and Legendre \(\chi\) functions of order 2, 3, (2) a lower bound for the dilogarithm function on the unit interval, (3) new Euler sums.


Author(s):  
Carlo Sanna

Let [Formula: see text] be the sequence of Fibonacci numbers. Guy and Matiyasevich proved that [Formula: see text] where [Formula: see text] is the least common multiple and [Formula: see text] is the golden ratio. We prove that for every periodic sequence [Formula: see text] in [Formula: see text] there exists an effectively computable rational number [Formula: see text] such that [Formula: see text] Moreover, we show that if [Formula: see text] is a sequence of independent uniformly distributed random variables in [Formula: see text] then [Formula: see text] where [Formula: see text] is the dilogarithm function.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bao-ning Du ◽  
Min-xin Huang

Abstract We continue the study of a novel relation between quantum periods and TBA(Thermodynamic Bethe Ansatz)-like difference equations, generalize previous works to a large class of Calabi-Yau geometries described by three-term quantum operators. We give two methods to derive the TBA-like equations. One method uses only elementary functions while the other method uses Faddeev’s quantum dilogarithm function. The two approaches provide different realizations of TBA-like equations which are nevertheless related to the same quantum period.


2019 ◽  
Vol 69 (6) ◽  
pp. 1329-1340 ◽  
Author(s):  
Vali Soltani Masih ◽  
Ali Ebadian ◽  
Sibel Yalçin

Abstract Let 𝓐 denote the family of analytic functions f with f(0) = f′(0) – 1 = 0, in the open unit disk Δ. We consider a class $$\begin{array}{} \displaystyle \mathcal{S}^{\ast}_{cs}(\alpha):=\left\{f\in\mathcal{A} : \left(\frac{zf'(z)}{f(z)}-1\right)\prec \frac{z}{1+\left(\alpha-1\right) z-\alpha z^2}, \,\, z\in \Delta\right\}, \end{array}$$ where 0 ≤ α ≤ 1/2, and ≺ is the subordination relation. The methods and techniques of geometric function theory are used to get characteristics of the functions in this class. Further, the sharp inequality for the logarithmic coefficients γn of f ∈ $\begin{array}{} \mathcal{S}^{\ast}_{cs} \end{array}$(α): $$\begin{array}{} \displaystyle \sum_{n=1}^{\infty}\left|\gamma_n\right|^2 \leq \frac{1}{4\left(1+\alpha\right)^2}\left(\frac{\pi^2}{6}-2 \mathrm{Li}_2\left(-\alpha\right)+ \mathrm{Li}_2\left(\alpha^2\right)\right), \end{array}$$ where Li2 denotes the dilogarithm function are investigated.


2019 ◽  
Vol 109 (2) ◽  
pp. 230-249 ◽  
Author(s):  
SAMINATHAN PONNUSAMY ◽  
NAVNEET LAL SHARMA ◽  
KARL-JOACHIM WIRTHS

Let${\mathcal{S}}$be the family of analytic and univalent functions$f$in the unit disk$\mathbb{D}$with the normalization$f(0)=f^{\prime }(0)-1=0$, and let$\unicode[STIX]{x1D6FE}_{n}(f)=\unicode[STIX]{x1D6FE}_{n}$denote the logarithmic coefficients of$f\in {\mathcal{S}}$. In this paper we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families${\mathcal{F}}(c)$and${\mathcal{G}}(c)$of functions$f\in {\mathcal{S}}$defined by$$\begin{eqnarray}\text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)>1-{\displaystyle \frac{c}{2}}\quad \text{and}\quad \text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)<1+{\displaystyle \frac{c}{2}},\quad z\in \mathbb{D},\end{eqnarray}$$for some$c\in (0,3]$and$c\in (0,1]$, respectively. We obtain the sharp upper bound for$|\unicode[STIX]{x1D6FE}_{n}|$when$n=1,2,3$and$f$belongs to the classes${\mathcal{F}}(c)$and${\mathcal{G}}(c)$, respectively. The paper concludes with the following two conjectures:∙If$f\in {\mathcal{F}}(-1/2)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq 1/n(1-(1/2^{n+1}))$for$n\geq 1$, and$$\begin{eqnarray}\mathop{\sum }_{n=1}^{\infty }|\unicode[STIX]{x1D6FE}_{n}|^{2}\leq {\displaystyle \frac{\unicode[STIX]{x1D70B}^{2}}{6}}+{\displaystyle \frac{1}{4}}~\text{Li}_{2}\biggl({\displaystyle \frac{1}{4}}\biggr)-\text{Li}_{2}\biggl({\displaystyle \frac{1}{2}}\biggr),\end{eqnarray}$$where$\text{Li}_{2}(x)$denotes the dilogarithm function.∙If$f\in {\mathcal{G}}(c)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq c/2n(n+1)$for$n\geq 1$.


Author(s):  
Christopher C. Green ◽  
Jonathan S. Marshall

Green's function for the Laplace–Beltrami operator on the surface of a three-dimensional ring torus is constructed. An integral ingredient of our approach is the stereographic projection of the torus surface onto a planar annulus. Our representation for Green's function is written in terms of the Schottky–Klein prime function associated with the annulus and the dilogarithm function. We also consider an application of our results to vortex dynamics on the surface of a torus.


Sign in / Sign up

Export Citation Format

Share Document