scholarly journals A Family of Optimal Eighth Order Iteration Functions for Multiple Roots and Its Dynamics

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Saima Akram ◽  
Faiza Akram ◽  
Moin-ud-Din Junjua ◽  
Misbah Arshad ◽  
Tariq Afzal

In this manuscript, we present a new general family of optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity using weight functions. An extensive convergence analysis is presented to verify the optimal eighth order convergence of the new family. Some special cases of the family are also presented which require only three functions and one derivative evaluation at each iteration to reach optimal eighth order convergence. A variety of numerical test functions along with some real-world problems such as beam designing model and Van der Waals’ equation of state are presented to ensure that the newly developed family efficiently competes with the other existing methods. The dynamical analysis of the proposed methods is also presented to validate the theoretical results by using graphical tools, termed as the basins of attraction.

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1947
Author(s):  
Deepak Kumar ◽  
Sunil Kumar ◽  
Janak Raj Sharma ◽  
Matteo d’Amore

There are a few optimal eighth order methods in literature for computing multiple zeros of a nonlinear function. Therefore, in this work our main focus is on developing a new family of optimal eighth order iterative methods for multiple zeros. The applicability of proposed methods is demonstrated on some real life and academic problems that illustrate the efficient convergence behavior. It is shown that the newly developed schemes are able to compete with other methods in terms of numerical error, convergence and computational time. Stability is also demonstrated by means of a pictorial tool, namely, basins of attraction that have the fractal-like shapes along the borders through which basins are symmetric.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 310 ◽  
Author(s):  
Fiza Zafar ◽  
Alicia Cordero ◽  
Juan Torregrosa

Finding a repeated zero for a nonlinear equation f ( x ) = 0 , f : I ⊆ R → R has always been of much interest and attention due to its wide applications in many fields of science and engineering. Modified Newton’s method is usually applied to solve this kind of problems. Keeping in view that very few optimal higher-order convergent methods exist for multiple roots, we present a new family of optimal eighth-order convergent iterative methods for multiple roots with known multiplicity involving a multivariate weight function. The numerical performance of the proposed methods is analyzed extensively along with the basins of attractions. Real life models from life science, engineering, and physics are considered for the sake of comparison. The numerical experiments and dynamical analysis show that our proposed methods are efficient for determining multiple roots of nonlinear equations.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 672 ◽  
Author(s):  
Saima Akram ◽  
Fiza Zafar ◽  
Nusrat Yasmin

In this paper, we introduce a new family of efficient and optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity ( m ≥ 1 ) . We use the weight function approach involving one and two parameters to develop the new family. A comprehensive convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results formulated in this paper and illustrates that the suggested family is efficient among the domain of multiple root finding methods.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 322 ◽  
Author(s):  
Yanlin Tao ◽  
Kalyanasundaram Madhu

The principal objective of this work is to propose a fourth, eighth and sixteenth order scheme for solving a nonlinear equation. In terms of computational cost, per iteration, the fourth order method uses two evaluations of the function and one evaluation of the first derivative; the eighth order method uses three evaluations of the function and one evaluation of the first derivative; and sixteenth order method uses four evaluations of the function and one evaluation of the first derivative. So these all the methods have satisfied the Kung-Traub optimality conjecture. In addition, the theoretical convergence properties of our schemes are fully explored with the help of the main theorem that demonstrates the convergence order. The performance and effectiveness of our optimal iteration functions are compared with the existing competitors on some standard academic problems. The conjugacy maps of the presented method and other existing eighth order methods are discussed, and their basins of attraction are also given to demonstrate their dynamical behavior in the complex plane. We apply the new scheme to find the optimal launch angle in a projectile motion problem and Planck’s radiation law problem as an application.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 239 ◽  
Author(s):  
Ramandeep Behl ◽  
M. Salimi ◽  
M. Ferrara ◽  
S. Sharifi ◽  
Samaher Alharbi

In this study, we present a new higher-order scheme without memory for simple zeros which has two major advantages. The first one is that each member of our scheme is derivative free and the second one is that the present scheme is capable of producing many new optimal family of eighth-order methods from every 4-order optimal derivative free scheme (available in the literature) whose first substep employs a Steffensen or a Steffensen-like method. In addition, the theoretical and computational properties of the present scheme are fully investigated along with the main theorem, which demonstrates the convergence order and asymptotic error constant. Moreover, the effectiveness of our scheme is tested on several real-life problems like Van der Waal’s, fractional transformation in a chemical reactor, chemical engineering, adiabatic flame temperature, etc. In comparison with the existing robust techniques, the iterative methods in the new family perform better in the considered test examples. The study of dynamics on the proposed iterative methods also confirms this fact via basins of attraction applied to a number of test functions.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2194
Author(s):  
Francisco I. Chicharro ◽  
Rafael A. Contreras ◽  
Neus Garrido

A straightforward family of one-point multiple-root iterative methods is introduced. The family is generated using the technique of weight functions. The order of convergence of the family is determined in its convergence analysis, which shows the constraints that the weight function must satisfy to achieve order three. In this sense, a family of iterative methods can be obtained with a suitable design of the weight function. That is, an iterative algorithm that depends on one or more parameters is designed. This family of iterative methods, starting with proper initial estimations, generates a sequence of approximations to the solution of a problem. A dynamical analysis is also included in the manuscript to study the long-term behavior of the family depending on the parameter value and the initial guess considered. This analysis reveals the good properties of the family for a wide range of values of the parameter. In addition, a numerical test on academic and engineering multiple-root functions is performed.


2018 ◽  
Vol 173 ◽  
pp. 03024
Author(s):  
Tugal Zhanlav ◽  
Ochbadrakh Chuluunbaatar ◽  
Vandandoo Ulziibayar

In this paper we propose a generating function method for constructing new two and three-point iterations withp(p= 4, 8) order of convergence. This approach allows us to derive a new family of optimal order iterative methods that include well known methods as special cases. Necessary and sufficient conditions forp-th (p= 4, 8) order convergence of the proposed iterations are given in terms of parameters τnand αn. We also propose some generating functions for τnand αn. We develop a unified representation of all optimal eighth-order methods. The order of convergence of the proposed methods is confirmed by numerical experiments.


2020 ◽  
Vol 37 (1-2) ◽  
pp. 14-29
Author(s):  
Prem Bahadur Chand

In this paper, using the variant of Frontini-Sormani method, some higher order methods for finding the roots (simple and multiple) of nonlinear equations are proposed. In particular, we have constructed an optimal fourth order method and a family of sixth order method for finding a simple root. Further, an optimal fourth order method for finding a multiple root of a nonlinear equation is also proposed. We have used different weight functions to a cubically convergent For ntini-Sormani method for the construction of these methods. The proposed methods are tested on numerical examples and compare the results with some existing methods. Further, we have presented the basins of attraction of these methods to understand their dynamics visually.


Sign in / Sign up

Export Citation Format

Share Document