scholarly journals On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces

Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Ling-Xiong Han ◽  
Feng Qi

In this paper, the authors introduce the Orlicz spaces corresponding to the Young function and, by virtue of the equivalent theorem between the modified K-functional and modulus of smoothness, establish the direct, inverse, and equivalent theorems for linear combinations of modified summation operators of integral type in the Orlicz spaces.

2004 ◽  
Vol 11 (04) ◽  
pp. 359-375 ◽  
Author(s):  
R. F. Streater

Let H0 be a selfadjoint operator such that Tr e−βH0 is of trace class for some β < 1, and let χɛ denote the set of ɛ-bounded forms, i.e., ∥(H0+C)−1/2−ɛX(H0+C)−1/2+ɛ∥ < C for some C > 0. Let χ := Span ∪ɛ∈(0,1/2]χɛ. Let [Formula: see text] denote the underlying set of the quantum information manifold of states of the form ρx = e−H0−X−ψx, X ∈ χ. We show that if Tr e−H0 = 1. 1. the map Φ, [Formula: see text] is a quantum Young function defined on χ 2. The Orlicz space defined by Φ is the tangent space of [Formula: see text] at ρ0; its affine structure is defined by the (+1)-connection of Amari 3. The subset of a ‘hood of ρ0, consisting of p-nearby states (those [Formula: see text] obeying C−1ρ1+p ≤ σ ≤ Cρ1 − p for some C > 1) admits a flat affine connection known as the (−1) connection, and the span of this set is part of the cotangent space of [Formula: see text] 4. These dual structures extend to the completions in the Luxemburg norms.


2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Nursel Çetin ◽  
Danilo Costarelli ◽  
Gianluca Vinti

AbstractIn this paper, we establish quantitative estimates for nonlinear sampling Kantorovich operators in terms of the modulus of smoothness in the setting of Orlicz spaces. This general frame allows us to directly deduce some quantitative estimates of approximation in $$L^{p}$$ L p -spaces, $$1\le p<\infty $$ 1 ≤ p < ∞ , and in other well-known instances of Orlicz spaces, such as the Zygmung and the exponential spaces. Further, the qualitative order of approximation has been obtained assuming f in suitable Lipschitz classes. The above estimates achieved in the general setting of Orlicz spaces, have been also improved in the $$L^p$$ L p -case, using a direct approach suitable to this context. At the end, we consider the particular cases of the nonlinear sampling Kantorovich operators constructed by using some special kernels.


2021 ◽  
Vol 13 (2) ◽  
pp. 326-339
Author(s):  
H.H. Bang ◽  
V.N. Huy

In this paper, we investigate the behavior of the sequence of $L^\Phi$-norm of functions, which are generated by differential and integral operators through their spectra (the support of the Fourier transform of a function $f$ is called its spectrum and denoted by sp$(f)$). With $Q$ being a polynomial, we introduce the notion of $Q$-primitives, which will return to the notion of primitives if ${Q}(x)= x$, and study the behavior of the sequence of norm of $Q$-primitives of functions in Orlicz space $L^\Phi(\mathbb R^n)$. We have the following main result: let $\Phi $ be an arbitrary Young function, ${Q}({\bf x} )$ be a polynomial and $(\mathcal{Q}^mf)_{m=0}^\infty \subset L^\Phi(\mathbb R^n)$ satisfies $\mathcal{Q}^0f=f, {Q}(D)\mathcal{Q}^{m+1}f=\mathcal{Q}^mf$ for $m\in\mathbb{Z}_+$. Assume that sp$(f)$ is compact and $sp(\mathcal{Q}^{m}f)= sp(f)$ for all $m\in \mathbb{Z}_+.$ Then $$ \lim\limits_{m\to \infty } \|\mathcal{Q}^m f\|_{\Phi}^{1/m}= \sup\limits_{{\bf x} \in sp(f)} \bigl|1/ {Q}({\bf x}) \bigl|. $$ The corresponding results for functions generated by differential operators and integral operators are also given.


Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2851-2865
Author(s):  
Emre Deniz ◽  
Ali Aral ◽  
Gulsum Ulusoy

In this paper we construct new integral type operators including heritable properties of Baskakov Durrmeyer and Baskakov Kantorovich operators. Results concerning convergence of these operators in weighted space and the hypergeometric form of the operators are shown. Voronovskaya type estimate of the pointwise convergence along with its quantitative version based on the weighted modulus of smoothness are given. Moreover, we give a direct approximation theorem for the operators in suitable weighted Lp space on [0,?).


2020 ◽  
Vol 13 (3) ◽  
pp. 145-151
Author(s):  
Öztürk zlem Acar ◽  
Sümeyye Coşkun

Sign in / Sign up

Export Citation Format

Share Document