scholarly journals Some Inequalities for g-Frames in Hilbert C*-Modules

Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 25
Author(s):  
Zhong-Qi Xiang

In this paper, we obtain new inequalities for g-frames in Hilbert C * -modules by using operator theory methods, which are related to a scalar λ ∈ R and an adjointable operator with respect to two g-Bessel sequences. It is demonstrated that our results can lead to several known results on this topic when suitable scalars and g-Bessel sequences are chosen.

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 141 ◽  
Author(s):  
Zhong-Qi Xiang

In this paper, we present several new inequalities for weaving frames in Hilbert spaces from the point of view of operator theory, which are related to a linear bounded operator induced by three Bessel sequences and a scalar in the set of real numbers. It is indicated that our results are more general and cover the corresponding results recently obtained by Li and Leng. We also give a triangle inequality for weaving frames in Hilbert spaces, which is structurally different from previous ones.


Author(s):  
Z. L. Chen ◽  
H. X. Cao ◽  
Z. H. Guo

For Hilbert spaces [Formula: see text] and [Formula: see text], we use the notations [Formula: see text], [Formula: see text] and [Formula: see text] to denote the sets of all [Formula: see text]-Bessel sequences, [Formula: see text]-frames and Riesz bases in [Formula: see text] with respect to [Formula: see text], respectively. By defining a linear operation and a norm, we prove that [Formula: see text] becomes a Banach space and is isometrically isomorphic to the operator space [Formula: see text], where [Formula: see text]. In light of operator theory, it is proved that [Formula: see text] and [Formula: see text] are open sets in [Formula: see text]. This implies that both [Formula: see text]-frames and Riesz bases are stable under a small perturbation. By introducing a linear bijection [Formula: see text] from [Formula: see text] onto the [Formula: see text]-algebra [Formula: see text], a multiplication and an involution on the Banach space [Formula: see text] are defined so that [Formula: see text] becomes a unital [Formula: see text]-algebra that is isometrically isomorphic to the [Formula: see text]-algebra [Formula: see text], provided that [Formula: see text] and [Formula: see text] are isomorphic.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2249-2255
Author(s):  
Huanyin Chen ◽  
Marjan Abdolyousefi

It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin inverse. In this case, (ba)d = b((ab)d)2a. This formula is so-called Cline?s formula for g-Drazin inverse, which plays an elementary role in matrix and operator theory. In this paper, we generalize Cline?s formula to the wider case. In particular, as applications, we obtain new common spectral properties of bounded linear operators.


1979 ◽  
Vol 5 (1) ◽  
pp. 124 ◽  
Author(s):  
Burkholder

2003 ◽  
Vol 68 (3) ◽  
pp. 529-553 ◽  
Author(s):  
Ivana Paidarová ◽  
Philippe Durand

The wave operator theory of quantum dynamics is reviewed and applied to the study of line profiles and to the determination of the dynamics of interacting resonances. Energy-dependent and energy-independent effective Hamiltonians are investigated. The q-reversal effect in spectroscopy is interpreted in terms of interfering Fano profiles. The dynamics of an hydrogen atom subjected to a strong static electric field is revisited.


1972 ◽  
Vol 7 (2) ◽  
pp. 297-299
Author(s):  
Neil Charles Powers

Author(s):  
Dafang Zhao ◽  
Muhammad Aamir Ali ◽  
Artion Kashuri ◽  
Hüseyin Budak ◽  
Mehmet Zeki Sarikaya

Abstract In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called “interval-valued approximately h-convex functions”. We establish some inequalities of Hermite–Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302, 2018 and H. Budak et al. in Proc. Am. Math. Soc., 2019). We also discussed some special cases from our main results.


Sign in / Sign up

Export Citation Format

Share Document