scholarly journals Stability and Bifurcation Analysis on a Predator–Prey System with the Weak Allee Effect

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 432 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Yuzhen Bai

In this paper, the dynamics of a predator-prey system with the weak Allee effect is considered. The sufficient conditions for the existence of Hopf bifurcation and stability switches induced by delay are investigated. By using the theory of normal form and center manifold, an explicit expression, which can be applied to determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions, are obtained. Numerical simulations are performed to illustrate the theoretical analysis results.

2009 ◽  
Vol 02 (04) ◽  
pp. 483-506 ◽  
Author(s):  
ZHICHAO JIANG ◽  
WENZHI ZHANG ◽  
DONGSHENG HUO

A delayed ratio-dependent one-predator and two-prey system with Michaelis–Menten type functional response is investigated. We show the existence of nonnegative equilibria under some appropriated conditions. Criteria for local stability, instability of nonnegative equilibria are obtained. The existence of Hopf bifurcations at the endemic equilibrium is established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by using the normal form and the center manifold theory. At last, some numerical simulations to support the analytical conclusions are carried out.


Author(s):  
Wei Liu ◽  
Yaolin Jiang

AbstractThis article is concerned with a Leslie–Gower predator–prey system with the predator being harvested and the prey having a delay due to the gestation of prey species. By regarding the gestation delay as a bifurcation parameter, we first derive some sufficient conditions on the stability of positive equilibrium point and the existence of Hopf bifurcations basing on the local parametrization method for differential-algebra system. In succession, we also investigate the direction of Hopf bifurcations and the stability of bifurcating periodic solutions on the center manifold by employing the center manifold reduction for functional differential equations. Finally, to verify our theoretical predictions, several numerical simulations are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

Hopf bifurcation of a delayed predator-prey system with prey infection and the modified Leslie-Gower scheme is investigated. The conditions for the stability and existence of Hopf bifurcation of the system are obtained. The state feedback and parameter perturbation are used for controlling Hopf bifurcation in the system. In addition, direction of Hopf bifurcation and stability of the bifurcated periodic solutions of the controlled system are obtained by using normal form and center manifold theory. Finally, numerical simulation results are presented to show that the hybrid controller is efficient in controlling Hopf bifurcation.


2010 ◽  
Vol 143-144 ◽  
pp. 1358-1363
Author(s):  
Zhi Chao Jiang ◽  
Ming Wei Nie

In this paper, we investigate a delayed stage-structured predator-prey model with continuous harvesting on prey. Positivity and boundness of solutions and sufficient conditions of the stability of equilibria are obtained. Using and as bifurcation parameters, the existence of Hopf bifurcations at equilibria is established by analyzing the distribution of the characteristic values.


2012 ◽  
Vol 05 (01) ◽  
pp. 1250007 ◽  
Author(s):  
ZHICHAO JIANG ◽  
ZHAOZHUANG GUO ◽  
YUEFANG SUN

In this paper, a time-delayed predator-prey system is considered. The existence of Hopf bifurcations at the positive equilibrium is established by analyzing the distribution of the characteristic values. An explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory. Numerical simulations to support the analytical conclusions are carried out.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Manoj Kumar Singh ◽  
B. S. Bhadauria ◽  
Brajesh Kumar Singh

This paper deals with the study of the stability and the bifurcation analysis of a Leslie-Gower predator-prey model with Michaelis-Menten type predator harvesting. It is shown that the proposed model exhibits the bistability for certain parametric conditions. Dulac’s criterion has been adopted to obtain the sufficient conditions for the global stability of the model. Moreover, the model exhibits different kinds of bifurcations (e.g., the saddle-node bifurcation, the subcritical and supercritical Hopf bifurcations, Bogdanov-Takens bifurcation, and the homoclinic bifurcation) whenever the values of parameters of the model vary. The analytical findings and numerical simulations reveal far richer and complex dynamics in comparison to the models with no harvesting and with constant-yield predator harvesting.


2019 ◽  
Vol 17 (1) ◽  
pp. 141-159 ◽  
Author(s):  
Zaowang Xiao ◽  
Zhong Li ◽  
Zhenliang Zhu ◽  
Fengde Chen

Abstract In this paper, we consider a Beddington-DeAngelis predator-prey system with stage structure for predator and time delay incorporating prey refuge. By analyzing the characteristic equations, we study the local stability of the equilibrium of the system. Using the delay as a bifurcation parameter, the model undergoes a Hopf bifurcation at the coexistence equilibrium when the delay crosses some critical values. After that, by constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the system. Finally, the influence of prey refuge on densities of prey species and predator species is discussed.


2013 ◽  
Vol 805-806 ◽  
pp. 1957-1961
Author(s):  
Ting Wu

In this paper, a predator-prey system with functional response is studied,and a set of sufficient conditions are obtained for the stability of equilibrium point of the system. Moreover, optimal harvesting policy is obtained by using the maximal principle,and numerical simulation is applied to illustrate the correctness.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650165 ◽  
Author(s):  
Haiyin Li ◽  
Gang Meng ◽  
Zhikun She

In this paper, we investigate the stability and Hopf bifurcation of a delayed density-dependent predator–prey system with Beddington–DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator–prey system conforms to the realistically biological environment. We start with the geometric criterion introduced by Beretta and Kuang [2002] and then investigate the stability of the positive equilibrium and the stability switches of the system with respect to the delay parameter [Formula: see text]. Especially, we generalize the geometric criterion in [Beretta & Kuang, 2002] by introducing the condition [Formula: see text] which can be assured by the condition [Formula: see text], and adopting the technique of lifting to define the function [Formula: see text] for alternatively determining stability switches at the zeroes of [Formula: see text]s. Afterwards, by the Poincaré normal form for Hopf bifurcation in [Kuznetsov, 1998] and the bifurcation formulae in [Hassard et al., 1981], we qualitatively analyze the properties for the occurring Hopf bifurcations of the system (3). Finally, an example with numerical simulations is given to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document