scholarly journals Selected Applications of the Theory of Connections: A Technique for Analytical Constraint Embedding

Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 537 ◽  
Author(s):  
Hunter Johnston ◽  
Carl Leake ◽  
Yalchin Efendiev ◽  
Daniele Mortari

In this paper, we consider several new applications of the recently introduced mathematical framework of the Theory of Connections (ToC). This framework transforms constrained problems into unconstrained problems by introducing constraint-free variables. Using this transformation, various ordinary differential equations (ODEs), partial differential equations (PDEs) and variational problems can be formulated where the constraints are always satisfied. The resulting equations can then be easily solved by introducing a global basis function set (e.g., Chebyshev, Legendre, etc.) and minimizing a residual at pre-defined collocation points. In this paper, we highlight the utility of ToC by introducing various problems that can be solved using this framework including: (1) analytical linear constraint optimization; (2) the brachistochrone problem; (3) over-constrained differential equations; (4) inequality constraints; and (5) triangular domains.

2018 ◽  
Vol 6 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Aslak Tveito ◽  
Mary M. Maleckar ◽  
Glenn T. Lines

AbstractSingle channel dynamics can be modeled using stochastic differential equations, and the dynamics of the state of the channel (e.g. open, closed, inactivated) can be represented using Markov models. Such models can also be used to represent the effect of mutations as well as the effect of drugs used to alleviate deleterious effects of mutations. Based on the Markov model and the stochastic models of the single channel, it is possible to derive deterministic partial differential equations (PDEs) giving the probability density functions (PDFs) of the states of the Markov model. In this study, we have analyzed PDEs modeling wild type (WT) channels, mutant channels (MT) and mutant channels for which a drug has been applied (MTD). Our aim is to show that it is possible to optimize the parameters of a given drug such that the solution of theMTD model is very close to that of the WT: the mutation’s effect is, theoretically, reduced significantly.We will present the mathematical framework underpinning this methodology and apply it to several examples. In particular, we will show that it is possible to use the method to, theoretically, improve the properties of some well-known existing drugs.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
N. H. Sweilam ◽  
M. M. Khader ◽  
W. Y. Kota

A numerical method for solving fourth-order integro-differential equations is presented. This method is based on replacement of the unknown function by a truncated series of well-known shifted Chebyshev expansion of functions. An approximate formula of the integer derivative is introduced. The introduced method converts the proposed equation by means of collocation points to system of algebraic equations with shifted Chebyshev coefficients. Thus, by solving this system of equations, the shifted Chebyshev coefficients are obtained. Special attention is given to study the convergence analysis and derive an upper bound of the error of the presented approximate formula. Numerical results are performed in order to illustrate the usefulness and show the efficiency and the accuracy of the present work.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yongtao Xuan ◽  
Rohul Amin ◽  
Fakhar Zaman ◽  
Zohaib Khan ◽  
Imad Ullah ◽  
...  

In this article, an efficient numerical approach for the solution of second-order delay differential equations to deal with the experimentation of the Internet of Industrial Things (IIoT) is presented. With the help of the Haar wavelet technique, the considered problem is transformed into a system of algebraic equations which is then solved for the required results by using Gauss elimination algorithm. Some numerical examples for convergence of the proposed technique are taken from the literature. Maximum absolute and root mean square errors are calculated for various collocation points. The results show that the Haar wavelet method is an effective method for solving delay differential equations of second order. The convergence rate is also measured for various collocation points, which is almost equal to 2.


2019 ◽  
Vol 8 (1) ◽  
pp. 702-718
Author(s):  
Mahmoud Mashali-Firouzi ◽  
Mohammad Maleki

Abstract The nonlocal nature of the fractional derivative makes the numerical treatment of fractional differential equations expensive in terms of computational accuracy in large domains. This paper presents a new multiple-step adaptive pseudospectral method for solving nonlinear multi-order fractional initial value problems (FIVPs), based on piecewise Legendre–Gauss interpolation. The fractional derivatives are described in the Caputo sense. We derive an adaptive pseudospectral scheme for approximating the fractional derivatives at the shifted Legendre–Gauss collocation points. By choosing a step-size, the original FIVP is replaced with a sequence of FIVPs in subintervals. Then the obtained FIVPs are consecutively reduced to systems of algebraic equations using collocation. Some error estimates are investigated. It is shown that in the present multiple-step pseudospectral method the accuracy of the solution can be improved either by decreasing the step-size or by increasing the number of collocation points within subintervals. The main advantage of the present method is its superior accuracy and suitability for large-domain calculations. Numerical examples are given to demonstrate the validity and high accuracy of the proposed technique.


2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-15
Author(s):  
Dhiranuch Bunnag

This paper presents global optimization algorithms that incorporate the idea of an interval branch and bound and the stochastic search algorithms. Two algorithms for unconstrained problems are proposed, the hybrid interval simulated annealing and the combined interval branch and bound and genetic algorithm. The numerical experiment shows better results compared to Hansen’s algorithm and simulated annealing in terms of the storage, speed, and number of function evaluations. The convergence proof is described. Moreover, the idea of both algorithms suggests a structure for an integrated interval branch and bound and genetic algorithm for constrained problems in which the algorithm is described and tested. The aim is to capture one of the solutions with higher accuracy and lower cost. The results show better quality of the solutions with less number of function evaluations compared with the traditional GA.


Author(s):  
K. S. Surana ◽  
M. A. Bona

Abstract This paper presents a new computational strategy, computational framework and mathematical framework for numerical computations of higher class solutions of differential and partial differential equations. The approach presented here utilizes ‘strong forms’ of the governing differential equations (GDE’s) and least squares approach in constructing the integral form. The conventional, or currently used, approaches seek the convergence of a solution in a fixed (order) space by h, p or hp-adaptive processes. The fundamental point of departure in the proposed approach is that we seek convergence of the computed solution by changing the orders of the spaces of the basis functions. With this approach convergence rates much higher than those from h,p–processes are achievable and the progressively computed solutions converge to the ‘strong’ i.e. ‘theoretical’ solutions of the GDE’s. Many other benefits of this approach are discussed and demonstrated. Stationary and time-dependant convection-diffusion and Burgers equations are used as model problems.


Sign in / Sign up

Export Citation Format

Share Document