scholarly journals Pointwise Optimality of Wavelet Density Estimation for Negatively Associated Biased Sample

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Renyu Ye ◽  
Xinsheng Liu ◽  
Yuncai Yu

This paper focuses on the density estimation problem that occurs when the sample is negatively associated and biased. We constructed a block thresholding wavelet estimator to recover the density function from the negatively associated biased sample. The pointwise optimality of this wavelet density estimation is shown as L p ( 1 ≤ p < ∞ ) risks over Besov space. To validate the effectiveness of the block thresholding wavelet method, we provide some examples and implement the numerical simulations. The results indicate that our block thresholding wavelet density estimator is superior in terms of the mean squared error (MSE) when comparing with the nonlinear wavelet density estimator.

2016 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Sigve Hovda

Transmetric density estimation is a generalization of kernel density estimation that is proposed in Hovda(2014) and Hovda (2016), This framework involves the possibility of making assumptions on the kernel of the distribution to improve convergence orders and to reduce the number of dimensions in the graphical display.  In this paper we show that several state-of-the-art nonparametric, semiparametric and even parametric methods are special cases of this formulation, meaning that there is a unified approach. Moreover, it is shown that parameters can be trained using unbiased cross-validation.  When parameter estimation is included, the mean integrated squared error of the transmetric density estimator is lower than for the common kernel density estimator, when the number of dimensions is larger than two.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Christophe Chesneau

We consider the estimation of an unknown functionffor weakly dependent data (α-mixing) in a general setting. Our contribution is theoretical: we prove that a hard thresholding wavelet estimator attains a sharp rate of convergence under the mean integrated squared error (MISE) over Besov balls without imposing too restrictive assumptions on the model. Applications are given for two types of inverse problems: the deconvolution density estimation and the density estimation in a GARCH-type model, both improve existing results in this dependent context. Another application concerns the regression model with random design.


Author(s):  
JUAN-JUAN CAI ◽  
HAN-YING LIANG

In this paper, we provide an asymptotic expression for mean integrated squared error (MISE) of nonlinear wavelet density estimator for a truncation model. It is assumed that the lifetime observations form a stationary α-mixing sequence. Unlike for kernel estimator, the MISE expression of the nonlinear wavelet estimator is not affected by the presence of discontinuities in the curves. Also, we establish asymptotic normality of the nonlinear wavelet estimator.


2006 ◽  
Vol 25 (1) ◽  
pp. 117-138 ◽  
Author(s):  
Fernanda P. M. Peixe ◽  
Alastair R. Hall ◽  
Kostas Kyriakoulis

2011 ◽  
Vol 60 (2) ◽  
pp. 248-255 ◽  
Author(s):  
Sangmun Shin ◽  
Funda Samanlioglu ◽  
Byung Rae Cho ◽  
Margaret M. Wiecek

2021 ◽  
Vol 8 (4) ◽  
pp. 309-332
Author(s):  
Efosa Michael Ogbeide ◽  
Joseph Erunmwosa Osemwenkhae

Density estimation is an important aspect of statistics. Statistical inference often requires the knowledge of observed data density. A common method of density estimation is the kernel density estimation (KDE). It is a nonparametric estimation approach which requires a kernel function and a window size (smoothing parameter H). It aids density estimation and pattern recognition. So, this work focuses on the use of a modified intersection of confidence intervals (MICIH) approach in estimating density. The Nigerian crime rate data reported to the Police as reported by the National Bureau of Statistics was used to demonstrate this new approach. This approach in the multivariate kernel density estimation is based on the data. The main way to improve density estimation is to obtain a reduced mean squared error (MSE), the errors for this approach was evaluated. Some improvements were seen. The aim is to achieve adaptive kernel density estimation. This was achieved under a sufficiently smoothing technique. This adaptive approach was based on the bandwidths selection. The quality of the estimates obtained of the MICIH approach when applied, showed some improvements over the existing methods. The MICIH approach has reduced mean squared error and relative faster rate of convergence compared to some other approaches. The approach of MICIH has reduced points of discontinuities in the graphical densities the datasets. This will help to correct points of discontinuities and display adaptive density. Keywords: approach, bandwidth, estimate, error, kernel density


2018 ◽  
Vol 10 (12) ◽  
pp. 4863 ◽  
Author(s):  
Chao Huang ◽  
Longpeng Cao ◽  
Nanxin Peng ◽  
Sijia Li ◽  
Jing Zhang ◽  
...  

Photovoltaic (PV) modules convert renewable and sustainable solar energy into electricity. However, the uncertainty of PV power production brings challenges for the grid operation. To facilitate the management and scheduling of PV power plants, forecasting is an essential technique. In this paper, a robust multilayer perception (MLP) neural network was developed for day-ahead forecasting of hourly PV power. A generic MLP is usually trained by minimizing the mean squared loss. The mean squared error is sensitive to a few particularly large errors that can lead to a poor estimator. To tackle the problem, the pseudo-Huber loss function, which combines the best properties of squared loss and absolute loss, was adopted in this paper. The effectiveness and efficiency of the proposed method was verified by benchmarking against a generic MLP network with real PV data. Numerical experiments illustrated that the proposed method performed better than the generic MLP network in terms of root mean squared error (RMSE) and mean absolute error (MAE).


2016 ◽  
Vol 5 (1) ◽  
pp. 39 ◽  
Author(s):  
Abbas Najim Salman ◽  
Maymona Ameen

<p>This paper is concerned with minimax shrinkage estimator using double stage shrinkage technique for lowering the mean squared error, intended for estimate the shape parameter (a) of Generalized Rayleigh distribution in a region (R) around available prior knowledge (a<sub>0</sub>) about the actual value (a) as initial estimate in case when the scale parameter (l) is known .</p><p>In situation where the experimentations are time consuming or very costly, a double stage procedure can be used to reduce the expected sample size needed to obtain the estimator.</p><p>The proposed estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y(<strong>×</strong>) and suitable region R.</p><p>Expressions for Bias, Mean squared error (MSE), Expected sample size [E (n/a, R)], Expected sample size proportion [E(n/a,R)/n], probability for avoiding the second sample and percentage of overall sample saved  for the proposed estimator are derived.</p><p>Numerical results and conclusions for the expressions mentioned above were displayed when the consider estimator are testimator of level of significanceD.</p><p>Comparisons with the minimax estimator and with the most recent studies were made to shown the effectiveness of the proposed estimator.</p>


2016 ◽  
Vol 5 (2) ◽  
pp. 35
Author(s):  
Sigve Hovda

<div>A transmetric is a generalization of a metric that is tailored to properties needed in kernel density estimation.  Using transmetrics in kernel density estimation is an intuitive way to make assumptions on the kernel of the distribution to improve convergence orders and to reduce the number of dimensions in the graphical display.  This framework is required for discussing the estimators that are suggested by Hovda (2014).</div><div> </div><div>Asymptotic arguments for the bias and the mean integrated squared error is difficult in the general case, but some results are given when the transmetric is of the type defined in Hovda (2014).  An important contribution of this paper is that the convergence order can be as high as $4/5$, regardless of the number of dimensions.</div>


Sign in / Sign up

Export Citation Format

Share Document