scholarly journals A Class of Quantum Briot–Bouquet Differential Equations with Complex Coefficients

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 794
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

Quantum inequalities (QI) are local restraints on the magnitude and range of formulas. Quantum inequalities have been established to have a different range of applications. In this paper, we aim to introduce a study of QI in a complex domain. The idea basically, comes from employing the notion of subordination. We shall formulate a new q-differential operator (generalized of Dunkl operator of the first type) and employ it to define the classes of QI. Moreover, we employ the q-Dunkl operator to extend the class of Briot–Bouquet differential equations. We investigate the upper solution and exam the oscillation solution under some analytic functions.


Author(s):  
Richard C. Gilbert

SynopsisBy use of the theory of asymptotic expansions for first-order linear systems of ordinary differential equations, asymptotic formulas are obtained for the solutions of annth order linear homogeneous ordinary differential equation with complex coefficients having asymptotic expansions in a sector of the complex plane. These asymptotic formulas involve the roots of certain polynomials whose coefficients are obtained from the asymptotic expansions of the coefficients of the differential operator.



Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 363 ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

It is well known that the conformable and the symmetric differential operators have formulas in terms of the first derivative. In this document, we combine the two definitions to get the symmetric conformable derivative operator (SCDO). The purpose of this effort is to provide a study of SCDO connected with the geometric function theory. These differential operators indicate a generalization of well known differential operator including the Sàlàgean differential operator. Our contribution is to impose two classes of symmetric differential operators in the open unit disk and to describe the further development of these operators by introducing convex linear symmetric operators. In addition, by acting these SCDOs on the class of univalent functions, we display a set of sub-classes of analytic functions having geometric representation, such as starlikeness and convexity properties. Investigations in this direction lead to some applications in the univalent function theory of well known formulas, by defining and studying some sub-classes of analytic functions type Janowski function and convolution structures. Moreover, by using the SCDO, we introduce a generalized class of Briot–Bouquet differential equations to introduce, what is called the symmetric conformable Briot–Bouquet differential equations. We shall show that the upper bound of this class is symmetric in the open unit disk.



Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 42 ◽  
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

A class of Briot–Bouquet differential equations is a magnificent part of investigating the geometric behaviors of analytic functions, using the subordination and superordination concepts. In this work, we aim to formulate a new differential operator with complex connections (coefficients) in the open unit disk and generalize a class of Briot–Bouquet differential equations (BBDEs). We study and generalize new classes of analytic functions based on the new differential operator. Consequently, we define a linear operator with applications.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Rabha W. Ibrahim ◽  
Rafida M. Elobaid ◽  
Suzan J. Obaiys

The present investigation covenants with the concept of quantum calculus besides the convolution operation to impose a comprehensive symmetric q-differential operator defining new classes of analytic functions. We study the geometric representations with applications. The applications deliberated to indicate the certainty of resolutions of a category of symmetric differential equations type Briot-Bouquet.



Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 342
Author(s):  
Rabha W. Ibrahim ◽  
Dumitru Baleanu

In this paper, we aim to generalize a fractional integro-differential operator in the open unit disk utilizing Jackson calculus (quantum calculus or q-calculus). Next, by consuming the generalized operator to define a formula of normalized analytic functions, we present a set of integral inequalities using the concepts of subordination and superordination. In addition, as an application, we determine the maximum and minimum solutions of the extended fractional 2D-shallow water equation in a complex domain.



2020 ◽  
Vol 9 (8) ◽  
pp. 5343-5348 ◽  
Author(s):  
T. G. Shaba ◽  
A. A. Ibrahim ◽  
M. F. Oyedotun


2021 ◽  
Vol 19 (1) ◽  
pp. 329-337
Author(s):  
Huo Tang ◽  
Kaliappan Vijaya ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

Abstract Let f k ( z ) = z + ∑ n = 2 k a n z n {f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f ( z ) = z + ∑ n = 2 ∞ a n z n f\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n} . In this paper, we determine sharp lower bounds for Re { f ( z ) / f k ( z ) } {\rm{Re}}\{f\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}\left(z)\} , Re { f k ( z ) / f ( z ) } {\rm{Re}}\{{f}_{k}\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}f\left(z)\} , Re { f ′ ( z ) / f k ′ ( z ) } {\rm{Re}}\{{f}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}^{^{\prime} }\left(z)\} and Re { f k ′ ( z ) / f ′ ( z ) } {\rm{Re}}\{{f}_{k}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}^{^{\prime} }\left(z)\} , where f ( z ) f\left(z) belongs to the subclass J p , q m ( μ , α , β ) {{\mathcal{J}}}_{p,q}^{m}\left(\mu ,\alpha ,\beta ) of analytic functions, defined by Sălăgean ( p , q ) \left(p,q) -differential operator. In addition, the inclusion relations involving N δ ( e ) {N}_{\delta }\left(e) of this generalized function class are considered.



2020 ◽  
Vol 26 (2) ◽  
pp. 297-307
Author(s):  
Petro I. Kalenyuk ◽  
Yaroslav O. Baranetskij ◽  
Lubov I. Kolyasa

AbstractWe study a nonlocal problem for ordinary differential equations of {2n}-order with involution. Spectral properties of the operator of this problem are analyzed and conditions for the existence and uniqueness of its solution are established. It is also proved that the system of eigenfunctions of the analyzed problem forms a Riesz basis.



2019 ◽  
Vol 13 (07) ◽  
pp. 2050134
Author(s):  
Erhan Deniz ◽  
Murat Çağlar ◽  
Yücel Özkan

In this paper, we study two new subclasses [Formula: see text] and [Formula: see text] of analytic functions which are defined by means of a differential operator. Some results connected to partial sums and neighborhoods and integral means related to these subclasses are obtained.



2018 ◽  
Vol 15 (03) ◽  
pp. 1850016 ◽  
Author(s):  
A. A. Hemeda

In this work, a simple new iterative technique based on the integral operator, the inverse of the differential operator in the problem under consideration, is introduced to solve nonlinear integro-differential and systems of nonlinear integro-differential equations (IDEs). The introduced technique is simpler and shorter in its computational procedures and time than the other methods. In addition, it does not require discretization, linearization or any restrictive assumption of any form in providing analytical or approximate solution to linear and nonlinear equations. Also, this technique does not require calculating Adomian’s polynomials, Lagrange’s multiplier values or equating the terms of equal powers of the impeding parameter which need more computational procedures and time. These advantages make it reliable and its efficiency is demonstrated with numerical examples.



Sign in / Sign up

Export Citation Format

Share Document