scholarly journals Partial sums and inclusion relations for analytic functions involving (p, q)-differential operator

2021 ◽  
Vol 19 (1) ◽  
pp. 329-337
Author(s):  
Huo Tang ◽  
Kaliappan Vijaya ◽  
Gangadharan Murugusundaramoorthy ◽  
Srikandan Sivasubramanian

Abstract Let f k ( z ) = z + ∑ n = 2 k a n z n {f}_{k}\left(z)=z+{\sum }_{n=2}^{k}{a}_{n}{z}^{n} be the sequence of partial sums of the analytic function f ( z ) = z + ∑ n = 2 ∞ a n z n f\left(z)=z+{\sum }_{n=2}^{\infty }{a}_{n}{z}^{n} . In this paper, we determine sharp lower bounds for Re { f ( z ) / f k ( z ) } {\rm{Re}}\{f\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}\left(z)\} , Re { f k ( z ) / f ( z ) } {\rm{Re}}\{{f}_{k}\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}f\left(z)\} , Re { f ′ ( z ) / f k ′ ( z ) } {\rm{Re}}\{{f}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}_{k}^{^{\prime} }\left(z)\} and Re { f k ′ ( z ) / f ′ ( z ) } {\rm{Re}}\{{f}_{k}^{^{\prime} }\left(z)\hspace{-0.08em}\text{/}\hspace{-0.08em}{f}^{^{\prime} }\left(z)\} , where f ( z ) f\left(z) belongs to the subclass J p , q m ( μ , α , β ) {{\mathcal{J}}}_{p,q}^{m}\left(\mu ,\alpha ,\beta ) of analytic functions, defined by Sălăgean ( p , q ) \left(p,q) -differential operator. In addition, the inclusion relations involving N δ ( e ) {N}_{\delta }\left(e) of this generalized function class are considered.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
G. Murugusundaramoorthy ◽  
K. Uma ◽  
M. Darus

Letfn(z)=z+∑k=2nakzkbe the sequence of partial sums of the analytic functionf(z)=z+∑k=2∞akzk. In this paper, we determine sharp lower bounds forℜ{f(z)/fn(z)}, ℜ{fn(z)/f(z)}, ℜ{f′(z)/fn′(z)},andℜ{fn′(z)/f′(z)}. The usefulness of the main result not only provides the unification of the results discussed in the literature but also generates certain new results.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050134
Author(s):  
Erhan Deniz ◽  
Murat Çağlar ◽  
Yücel Özkan

In this paper, we study two new subclasses [Formula: see text] and [Formula: see text] of analytic functions which are defined by means of a differential operator. Some results connected to partial sums and neighborhoods and integral means related to these subclasses are obtained.


Filomat ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 1-13 ◽  
Author(s):  
R.M. El-Ashwah

By means of Ruscheweyh derivative operator, we introduced and investigated two new subclasses of p-valent analytic functions. The various results obtained here for each of these function class include coefficient bounds and distortion inequalities, associated inclusion relations for the (n, ?)-neighborhoods of subclasses of analytic and multivalent functions with negative coefficients, which are defined by means of non-homogenous differential equation.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 783 ◽  
Author(s):  
Ibtisam Aldawish ◽  
Tariq Al-Hawary ◽  
B. A. Frasin

Let Ω denote the class of functions f ( z ) = z + a 2 z 2 + a 3 z 3 + ⋯ belonging to the normalized analytic function class A in the open unit disk U = z : z < 1 , which are bi-univalent in U , that is, both the function f and its inverse f − 1 are univalent in U . In this paper, we introduce and investigate two new subclasses of the function class Ω of bi-univalent functions defined in the open unit disc U , which are associated with a new differential operator of analytic functions involving binomial series. Furthermore, we find estimates on the Taylor–Maclaurin coefficients | a 2 | and | a 3 | for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 2
Author(s):  
Dong Liu ◽  
Serkan Araci ◽  
Bilal Khan

To date, many interesting subclasses of analytic functions involving symmetrical points and other well celebrated domains have been investigated and studied. The aim of our present investigation is to make use of certain Janowski functions and a Mathieu-type series to define a new subclass of analytic (or invariant) functions. Our defined function class is symmetric under rotation. Some useful results like Fekete-Szegö functional, a number of sufficient conditions, radius problems, and results related to partial sums are derived.


2019 ◽  
Vol 38 (6) ◽  
pp. 33-42 ◽  
Author(s):  
A. A. Amourah ◽  
Feras Yousef

In the present paper, we introduce a new generalized differentialoperator $A_{\mu,\lambda,\sigma}^{m}(\alpha,\beta)$ defined on the openunit disc $U=\left\{ z\in%%TCIMACRO{\U{2102} }%%BeginExpansion\mathbb{C}:\left\vert z\right\vert <1\right\} $. A novel subclass $\Omega_{m}^{\ast}(\delta,\lambda,\alpha,\beta,b)$ by means of the operator $A_{\mu,\lambda,\sigma}^{m}(\alpha,\beta)$ is also introduced. Coefficient estimates, growth and distortion theorems, closuretheorems, and class preserving integral operators for functions in the class $\Omega_{m}^{\ast}(\delta,\lambda,\alpha,\beta,b)$ are discussed. Furthermore, sufficient conditions for close-to-convexity, starlikeness, and convexity for functions in the class $\Om are obtained


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 574
Author(s):  
Bilal Khan ◽  
Hari Mohan Srivastava ◽  
Nazar Khan ◽  
Maslina Darus ◽  
Qazi Zahoor Ahmad ◽  
...  

In our present investigation, with the help of the basic (or q-) calculus, we first define a new domain which involves the Janowski function. We also define a new subclass of the class of q-starlike functions, which maps the open unit disk U, given by U= z:z∈C and z <1, onto this generalized conic type domain. We study here some such potentially useful results as, for example, the sufficient conditions, closure results, the Fekete-Szegö type inequalities and distortion theorems. We also obtain the lower bounds for the ratio of some functions which belong to this newly-defined function class and for the sequences of the partial sums. Our results are shown to be connected with several earlier works related to the field of our present investigation. Finally, in the concluding section, we have chosen to reiterate the well-demonstrated fact that any attempt to produce the rather straightforward (p,q)-variations of the results, which we have presented in this article, will be a rather trivial and inconsequential exercise, simply because the additional parameter p is obviously redundant.


2007 ◽  
Vol 38 (4) ◽  
pp. 301-306
Author(s):  
Jin-Lin Liu

By making use of the familiar concept of neighborhoods of analytic functions, the author proves an inclusion relations associated with the $ (n, \delta)- $neighborhoods of a subclass $ Q_k[p, \alpha; A, B] $ which was introduced by Srivastava, Hossen and Aouf. The partial sums of the functions in $ Q_k[p, \alpha; A, B] $ are also considered.


2018 ◽  
Vol 10 (1) ◽  
pp. 178-188 ◽  
Author(s):  
N. Ravikumar

Abstract In this paper, the concept of fractional q-calculus and generalized Al-Oboudi differential operator defining certain classes of analytic functions in the open disc are used. The results investigated for these classes of functions include the coefficient estimates, inclusion relations, extreme points and some more properties.


2021 ◽  
Vol 2 (18) ◽  
pp. 60-76
Author(s):  
Salma Faraj Ramadan ◽  

In the present paper, we introduce the class A of p-valent analytic functions in the open unit disk We investigate some inclusion properties, coefficient bounds, distortion theorem, -neighborhoods and partial sums. Also we obtain integral representation, weighted and arithmetic mean.


Sign in / Sign up

Export Citation Format

Share Document