scholarly journals Generalized Fixed Point Results with Application to Nonlinear Fractional Differential Equations

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1168
Author(s):  
Hanadi Zahed ◽  
Hoda A. Fouad ◽  
Snezhana Hristova ◽  
Jamshaid Ahmad

The main objective of this paper is to introduce the ( α , β )-type ϑ -contraction, ( α , β )-type rational ϑ -contraction, and cyclic ( α - ϑ ) contraction. Based on these definitions we prove fixed point theorems in the complete metric spaces. These results extend and improve some known results in the literature. As an application of the proved fixed point Theorems, we study the existence of solutions of an integral boundary value problem for scalar nonlinear Caputo fractional differential equations with a fractional order in (1,2).

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Sumaiya Tasneem Zubair ◽  
Kalpana Gopalan ◽  
Thabet Abdeljawad ◽  
Bahaaeldin Abdalla

The focus of this research article is to investigate the notion of fuzzy extended hexagonal b-metric spaces as a technique of broadening the fuzzy rectangular b-metric spaces and extended fuzzy rectangular b-metric spaces as well as to derive the Banach fixed point theorem and several novel fixed point theorems with certain contraction mappings. The analog of hexagonal inequality in fuzzy extended hexagonal b-metric spaces is specified as follows utilizing the function b(c,d): mhc,d,t+s+u+v+w≥mhc,e,tb(c,d)∗mhe,f,sb(c,d)∗mhf,g,ub(c,d)∗mhg,k,vb(c,d)∗mhk,d,wb(c,d) for all t,s,u,v,w>0 and c≠e,e≠f,f≠g,g≠k,k≠d. Further to that, this research attempts to provide a feasible solution for the Caputo type nonlinear fractional differential equations through effective applications of our results obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak

This paper studies the existence of solutions for a nonlinear boundary value problem of impulsive fractional differential equations withp-Laplacian operator. Our results are based on some standard fixed point theorems. Examples are given to show the applicability of our results.


2020 ◽  
Vol 1 (1) ◽  
pp. 47-63
Author(s):  
Hanan A. Wahash ◽  
Satish K. Panchal

In this paper, we consider a class of boundary value problems for nonlinear two-term fractional differential equations with integral boundary conditions involving two $\psi $-Caputo fractional derivative. With the help of the properties Green function, the fixed point theorems of Schauder and Banach, and the method of upper and lower solutions, we derive the existence and uniqueness of positive solution of a proposed problem. Finally, an example is provided to illustrate the acquired results.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jingli Xie ◽  
Lijing Duan

In this paper, we investigate a class of integral boundary value problems of fractional differential equations with a p-Laplacian operator. Existence of solutions is obtained by using the fixed point theorem, and an example is given to show the applicability of our main result.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zoubida Bouazza ◽  
Mohammed Said Souid ◽  
Hatıra Günerhan

AbstractIn this manuscript, the existence, uniqueness, and stability of solutions to the multiterm boundary value problem of Caputo fractional differential equations of variable order are established. All results in this study are established with the help of the generalized intervals and piece-wise constant functions, we convert the Caputo fractional variable order to an equivalent standard Caputo of the fractional constant order. Further, two fixed point theorems due to Schauder and Banach are used, the Ulam–Hyers stability of the given Caputo variable order is examined, and finally, we construct an example to illustrate the validity of the observed results. In literature, the existence of solutions to the variable-order problems is rarely discussed. Therefore, investigating this interesting special research topic makes all our results novel and worthy.


Author(s):  
Ashwini D. Mali ◽  
Kishor D. Kucche ◽  
José Vanterler da Costa Sousa

Abstract This paper is dedicated to investigating the existence of solutions to the initial value problem (IVP) for a coupled system of Ψ-Hilfer hybrid fractional differential equations (FDEs) and boundary value problem (BVP) for a coupled system of Ψ-Hilfer hybrid FDEs. Analysis of the current paper depends on the two fixed point theorems involving three operators characterized on Banach algebra. In the view of an application, we provided useful examples to exhibit the effectiveness of our achieved results.


2021 ◽  
Vol 13 (3) ◽  
pp. 764-774
Author(s):  
H. Afshari ◽  
E. Karapinar

In this paper, we study the existence of solutions for the following differential equations by using a fixed point theorems \[ \begin{cases} D^{\mu}_{c}w(\varsigma)\pm D^{\nu}_{c}w(\varsigma)=h(\varsigma,w(\varsigma)),& \varsigma\in J,\ \ 0<\nu<\mu<1,\\ w(0)=w_0,& \ \end{cases} \] where $D^{\mu}$, $D^{\nu}$ is the Caputo derivative of order $\mu$, $\nu$, respectively and $h:J\times \mathbb{R}\rightarrow \mathbb{R}$ is continuous. The results are well demonstrated with the aid of exciting examples.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
Erdal Karapınar ◽  
Jamal Eddine Lazreg

Abstract In this manuscript, we examine the existence and the Ulam stability of solutions for a class of boundary value problems for nonlinear implicit fractional differential equations with instantaneous impulses in Banach spaces. The results are based on fixed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. We provide some examples to indicate the applicability of our results.


Sign in / Sign up

Export Citation Format

Share Document