scholarly journals Existence of Solutions for Nonlinear Impulsive Fractional Differential Equations withp-Laplacian Operator

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak

This paper studies the existence of solutions for a nonlinear boundary value problem of impulsive fractional differential equations withp-Laplacian operator. Our results are based on some standard fixed point theorems. Examples are given to show the applicability of our results.

Author(s):  
Ashwini D. Mali ◽  
Kishor D. Kucche ◽  
José Vanterler da Costa Sousa

Abstract This paper is dedicated to investigating the existence of solutions to the initial value problem (IVP) for a coupled system of Ψ-Hilfer hybrid fractional differential equations (FDEs) and boundary value problem (BVP) for a coupled system of Ψ-Hilfer hybrid FDEs. Analysis of the current paper depends on the two fixed point theorems involving three operators characterized on Banach algebra. In the view of an application, we provided useful examples to exhibit the effectiveness of our achieved results.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jingli Xie ◽  
Lijing Duan

In this paper, we investigate a class of integral boundary value problems of fractional differential equations with a p-Laplacian operator. Existence of solutions is obtained by using the fixed point theorem, and an example is given to show the applicability of our main result.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sabbavarapu Nageswara Rao ◽  
Abdullah Ali H. Ahmadini

AbstractIn this article, we are pleased to investigate multiple positive solutions for a system of Hadamard fractional differential equations with $(p_{1}, p_{2}, p_{3})$ ( p 1 , p 2 , p 3 ) -Laplacian operator. The main results rely on the standard tools of different fixed point theorems. Finally, we demonstrate the application of the obtained results with the aid of examples.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zoubida Bouazza ◽  
Mohammed Said Souid ◽  
Hatıra Günerhan

AbstractIn this manuscript, the existence, uniqueness, and stability of solutions to the multiterm boundary value problem of Caputo fractional differential equations of variable order are established. All results in this study are established with the help of the generalized intervals and piece-wise constant functions, we convert the Caputo fractional variable order to an equivalent standard Caputo of the fractional constant order. Further, two fixed point theorems due to Schauder and Banach are used, the Ulam–Hyers stability of the given Caputo variable order is examined, and finally, we construct an example to illustrate the validity of the observed results. In literature, the existence of solutions to the variable-order problems is rarely discussed. Therefore, investigating this interesting special research topic makes all our results novel and worthy.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1168
Author(s):  
Hanadi Zahed ◽  
Hoda A. Fouad ◽  
Snezhana Hristova ◽  
Jamshaid Ahmad

The main objective of this paper is to introduce the ( α , β )-type ϑ -contraction, ( α , β )-type rational ϑ -contraction, and cyclic ( α - ϑ ) contraction. Based on these definitions we prove fixed point theorems in the complete metric spaces. These results extend and improve some known results in the literature. As an application of the proved fixed point Theorems, we study the existence of solutions of an integral boundary value problem for scalar nonlinear Caputo fractional differential equations with a fractional order in (1,2).


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Lihong Zhang ◽  
Guotao Wang ◽  
Guangxing Song

We investigate the existence and uniqueness of solutions to the nonlocal boundary value problem for nonlinear impulsive fractional differential equations of orderα∈(2,3]. By using some well-known fixed point theorems, sufficient conditions for the existence of solutions are established. Some examples are presented to illustrate the main results.


2020 ◽  
Vol 39 (6) ◽  
pp. 1555-1575
Author(s):  
Muthaiah Subramanian ◽  
Thangaraj Nandha Gopal

We study the boundary value problems (BVPs) of the Caputo-Hadamard type fractional differential equations (FDEs) supplemented by multi-point conditions. Many new results of existence and uniqueness are obtained with the use of fixed point theorems for single-valued maps. With the help of examples, the results are well illustrated.


2021 ◽  
Vol 13 (3) ◽  
pp. 764-774
Author(s):  
H. Afshari ◽  
E. Karapinar

In this paper, we study the existence of solutions for the following differential equations by using a fixed point theorems \[ \begin{cases} D^{\mu}_{c}w(\varsigma)\pm D^{\nu}_{c}w(\varsigma)=h(\varsigma,w(\varsigma)),& \varsigma\in J,\ \ 0<\nu<\mu<1,\\ w(0)=w_0,& \ \end{cases} \] where $D^{\mu}$, $D^{\nu}$ is the Caputo derivative of order $\mu$, $\nu$, respectively and $h:J\times \mathbb{R}\rightarrow \mathbb{R}$ is continuous. The results are well demonstrated with the aid of exciting examples.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
Erdal Karapınar ◽  
Jamal Eddine Lazreg

Abstract In this manuscript, we examine the existence and the Ulam stability of solutions for a class of boundary value problems for nonlinear implicit fractional differential equations with instantaneous impulses in Banach spaces. The results are based on fixed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. We provide some examples to indicate the applicability of our results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Naveed Ahmad ◽  
Zeeshan Ali ◽  
Kamal Shah ◽  
Akbar Zada ◽  
Ghaus ur Rahman

We study the existence, uniqueness, and various kinds of Ulam–Hyers stability of the solutions to a nonlinear implicit type dynamical problem of impulsive fractional differential equations with nonlocal boundary conditions involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach fixed point theorem and Krasnoselskii’s fixed point theorem. For stability, we utilized classical functional analysis. Also, an example is given to demonstrate our main theoretical results.


Sign in / Sign up

Export Citation Format

Share Document