scholarly journals New Proof That the Sum of the Reciprocals of Primes Diverges

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1414
Author(s):  
Vicente Jara-Vera ◽  
Carmen Sánchez-Ávila

In this paper, we give a new proof of the divergence of the sum of the reciprocals of primes using the number of distinct prime divisors of positive integer n, and the placement of lattice points on a hyperbola given by n=pr with prime number p. We also offer both a new expression of the average sum of the number of distinct prime divisors, and a new proof of its divergence, which is very intriguing by its elementary approach.

2017 ◽  
Vol 97 (1) ◽  
pp. 11-14
Author(s):  
M. SKAŁBA

Let $a_{1},a_{2},\ldots ,a_{m}$ and $b_{1},b_{2},\ldots ,b_{l}$ be two sequences of pairwise distinct positive integers greater than $1$. Assume also that none of the above numbers is a perfect power. If for each positive integer $n$ and prime number $p$ the number $\prod _{i=1}^{m}(1-a_{i}^{n})$ is divisible by $p$ if and only if the number $\prod _{j=1}^{l}(1-b_{j}^{n})$ is divisible by $p$, then $m=l$ and $\{a_{1},a_{2},\ldots ,a_{m}\}=\{b_{1},b_{2},\ldots ,b_{l}\}$.


2020 ◽  
Vol 18 (1) ◽  
pp. 907-915
Author(s):  
Zhongbi Wang ◽  
Chao Qin ◽  
Heng Lv ◽  
Yanxiong Yan ◽  
Guiyun Chen

Abstract For a positive integer n and a prime p, let {n}_{p} denote the p-part of n. Let G be a group, \text{cd}(G) the set of all irreducible character degrees of G , \rho (G) the set of all prime divisors of integers in \text{cd}(G) , V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\} , where {p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G\cong {L}_{2}({p}^{2}) if and only if |G|=|{L}_{2}({p}^{2})| and V(G)=V({L}_{2}({p}^{2})) .


2007 ◽  
Vol 76 (1) ◽  
pp. 133-136 ◽  
Author(s):  
Andrzej Dąbrowski

Let p be a prime number ≥ 5, and n a positive integer > 1. This note is concerned with the diophantine equation x4 − y4 = nzp. We prove that, under certain conditions on n, this equation has no non-trivial solution in Z if p ≥ C(n), where C(n) is an effective constant.


2008 ◽  
Vol 78 (3) ◽  
pp. 431-436 ◽  
Author(s):  
XUE-GONG SUN ◽  
JIN-HUI FANG

AbstractErdős and Odlyzko proved that odd integers k such that k2n+1 is prime for some positive integer n have a positive lower density. In this paper, we characterize all arithmetic progressions in which natural numbers that can be expressed in the form (p−1)2−n (where p is a prime number) have a positive proportion. We also prove that an arithmetic progression consisting of odd numbers can be obtained from a covering system if and only if those integers in such a progression which can be expressed in the form (p−1)2−n have an asymptotic density of zero.


2006 ◽  
Vol 58 (1) ◽  
pp. 115-153 ◽  
Author(s):  
W. Ivorra ◽  
A. Kraus

AbstractLet p be a prime number ≥ 5 and a, b, c be non zero natural numbers. Using the works of K. Ribet and A. Wiles on the modular representations, we get new results about the description of the primitive solutions of the diophantine equation axp + byp = cz2, in case the product of the prime divisors of abc divides 2ℓ, with ℓ an odd prime number. For instance, under some conditions on a, b, c, we provide a constant f (a, b, c) such that there are no such solutions if p > f (a, b, c). In application, we obtain information concerning the ℚ-rational points of hyperelliptic curves given by the equation y2 = xp + d with d ∈ ℤ.


1967 ◽  
Vol 15 (4) ◽  
pp. 249-255
Author(s):  
Sean Mc Donagh

1. In deriving an expression for the number of representations of a sufficiently large integer N in the formwhere k: is a positive integer, s(k) a suitably large function of k and pi is a prime number, i = 1, 2, …, s(k), by Vinogradov's method it is necessary to obtain estimates for trigonometrical sums of the typewhere ω = l/k and the real number a satisfies 0 ≦ α ≦ 1 and is “near” a rational number a/q, (a, q) = 1, with “large” denominator q. See Estermann (1), Chapter 3, for the case k = 1 or Hua (2), for the general case. The meaning of “near” and “arge” is made clear below—Lemma 4—as it is necessary for us to quote Hua's estimate. In this paper, in Theorem 1, an estimate is obtained for the trigonometrical sumwhere α satisfies the same conditions as above and where π denotes a squarefree number with r prime factors. This estimate enables one to derive expressions for the number of representations of a sufficiently large integer N in the formwhere s(k) has the same meaning as above and where πri, i = 1, 2, …, s(k), denotes a square-free integer with ri prime factors.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yuqian Lin ◽  
Qin Yue ◽  
Yansheng Wu

Let Fq be a finite field with q elements and n a positive integer. In this paper, we use matrix method to give all primitive idempotents of irreducible cyclic codes of length n, whose prime divisors divide q-1.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Long Chen ◽  
Kaimin Cheng ◽  
Tingting Wang

Let p be an odd prime number and n be a positive integer. Let vpn, N∗, and Q+ denote the p-adic valuation of the integer n, the set of positive integers, and the set of positive rational numbers, respectively. In this paper, we introduce an arithmetic function fp:N∗⟶Q+ defined by fpn≔n/pvpn1−vpn for any positive integer n. We show several interesting arithmetic properties about that function and then use them to establish some curious results involving the p-adic valuation. Some of these results extend Farhi’s results from the case of even prime to that of odd prime.


1990 ◽  
Vol 32 (3) ◽  
pp. 317-327 ◽  
Author(s):  
M. Akbas ◽  
D. Singerman

Let Γ denote the modular group, consisting of the Möbius transformationsAs usual we denote the above transformation by the matrix remembering that V and – V represent the same transformation. If N is a positive integer we let Γ0(N) denote the transformations for which c ≡ 0 mod N. Then Γ0(N) is a subgroup of indexthe product being taken over all prime divisors of N.


2011 ◽  
Vol 202 ◽  
pp. 15-22 ◽  
Author(s):  
Michael Coons ◽  
Sander R. Dahmen

AbstractLet Ω(n) denote the number of prime divisors of n counting multiplicity. One can show that for any positive integer m and all j = 0,1,…,m – 1, we havewith α = 1. Building on work of Kubota and Yoshida, we show that for m > 2 and any j = 0,1,…,m – 1, the error term is not o(xα) for any α < 1.


Sign in / Sign up

Export Citation Format

Share Document