scholarly journals Mean Square Convergent Non-Standard Numerical Schemes for Linear Random Differential Equations with Delay

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1417 ◽  
Author(s):  
Julia Calatayud ◽  
Juan Carlos Cortés ◽  
Marc Jornet ◽  
Francisco Rodríguez

In this paper, we are concerned with the construction of numerical schemes for linear random differential equations with discrete delay. For the linear deterministic differential equation with discrete delay, a recent contribution proposed a family of non-standard finite difference (NSFD) methods from an exact numerical scheme on the whole domain. The family of NSFD schemes had increasing order of accuracy, was dynamically consistent, and possessed simple computational properties compared to the exact scheme. In the random setting, when the two equation coefficients are bounded random variables and the initial condition is a regular stochastic process, we prove that the randomized NSFD schemes converge in the mean square (m.s.) sense. M.s. convergence allows for approximating the expectation and the variance of the solution stochastic process. In practice, the NSFD scheme is applied with symbolic inputs, and afterward the statistics are explicitly computed by using the linearity of the expectation. This procedure permits retaining the increasing order of accuracy of the deterministic counterpart. Some numerical examples illustrate the approach. The theoretical m.s. convergence rate is supported numerically, even when the two equation coefficients are unbounded random variables. M.s. dynamic consistency is assessed numerically. A comparison with Euler’s method is performed. Finally, an example dealing with the time evolution of a photosynthetic bacterial population is presented.

Author(s):  
Peter E Kloeden ◽  
Arnulf Jentzen

Random ordinary differential equations (RODEs) are ordinary differential equations (ODEs) with a stochastic process in their vector field. They can be analysed pathwise using deterministic calculus, but since the driving stochastic process is usually only Hölder continuous in time, the vector field is not differentiable in the time variable, so traditional numerical schemes for ODEs do not achieve their usual order of convergence when applied to RODEs. Nevertheless deterministic calculus can still be used to derive higher order numerical schemes for RODEs via integral versions of implicit Taylor-like expansions. The theory is developed systematically here and applied to illustrative examples involving Brownian motion and fractional Brownian motion as the driving processes.


2018 ◽  
Vol 23 (4) ◽  
pp. 76
Author(s):  
Julia Gregori ◽  
Juan López ◽  
Marc Sanz

The objective of this paper is to complete certain issues from our recent contribution (Calatayud, J.; Cortés, J.-C.; Jornet, M.; Villafuerte, L. Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ. 2018, 392, 1–29, doi:10.1186/s13662-018-1848-8). We restate the main theorem therein that deals with the homogeneous case, so that the hypotheses are clearer and also easier to check in applications. Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of mean square analytic solution and a numerical example. We also prove the uniqueness of mean square solution via a habitual Lipschitz condition that extends the classical Picard theorem to mean square calculus. In this manner, the study on general random non-autonomous second order linear differential equations with analytic data processes is completely resolved. Finally, we relate our exposition based on random power series with polynomial chaos expansions and the random differential transform method, the latter being a reformulation of our random Fröbenius method.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
J.-C. Cortés ◽  
J.-V. Romero ◽  
M.-D. Roselló ◽  
R.-J. Villanueva

The consideration of uncertainty in differential equations leads to the emergent area of random differential equations. Under this approach, inputs become random variables and/or stochastic processes. Often one assumes that inputs are independent, a hypothesis that simplifies the mathematical treatment although it could not be met in applications. In this paper, we analyse, through the Airy equation, the influence of statistical dependence of inputs on the output, computing its expectation and standard deviation by Fröbenius and Polynomial Chaos methods. The results are compared with Monte Carlo sampling. The analysis is conducted by the Airy equation since, as in the deterministic scenario its solutions are highly oscillatory, it is expected that differences will be better highlighted. To illustrate our study, and motivated by the ubiquity of Gaussian random variables in numerous practical problems, we assume that inputs follow a multivariate Gaussian distribution throughout the paper. The application of Fröbenius method to solve Airy equation is based on an extension of the method to the case where inputs are dependent. The numerical results show that the existence of statistical dependence among the inputs and its magnitude entails changes on the variability of the output.


2010 ◽  
Vol 23 (12) ◽  
pp. 1421-1424 ◽  
Author(s):  
G. Calbo ◽  
J.-C. Cortés ◽  
L. Jódar ◽  
L. Villafuerte

2009 ◽  
Vol 77 (2) ◽  
Author(s):  
Cláudio R. Ávila da Silva ◽  
Giuseppe Pintaude ◽  
Hazim Ali Al-Qureshi ◽  
Marcelo Alves Krajnc

In this paper the Archard model and classical results of mean square calculus are used to derive two Cauchy problems in terms of the expected value and covariance of the worn height stochastic process. The uncertainty is present in the wear and roughness coefficients. In order to model the uncertainty, random variables or stochastic processes are used. In the latter case, the expected value and covariance of the worn height stochastic process are obtained for three combinations of correlation models for the wear and roughness coefficients. Numerical examples for both models are solved. For the model based on a random variable, a larger dispersion in terms of worn height stochastic process was observed.


Sign in / Sign up

Export Citation Format

Share Document