scholarly journals Multiple Solutions for Partial Discrete Dirichlet Problems Involving the p-Laplacian

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2030
Author(s):  
Sijia Du ◽  
Zhan Zhou

Due to the applications in many fields, there is great interest in studying partial difference equations involving functions with two or more discrete variables. In this paper, we deal with the existence of infinitely many solutions for a partial discrete Dirichlet boundary value problem with the p-Laplacian by using critical point theory. Moreover, under appropriate assumptions on the nonlinear term, we determine open intervals of the parameter such that at least two positive solutions and an unbounded sequence of positive solutions are obtained by using the maximum principle. We also show two examples to illustrate our results.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1691
Author(s):  
Shaohong Wang ◽  
Zhan Zhou

Partial difference equations have received more and more attention in recent years due to their extensive applications in diverse areas. In this paper, we consider a Dirichlet boundary value problem of the partial difference equation involving the mean curvature operator. By applying critical point theory, the existence of at least three solutions is obtained. Furthermore, under some appropriate assumptions on the nonlinearity, we respectively show that this problem admits at least two or three positive solutions by means of a strong maximum principle. Finally, we present two concrete examples and combine with images to illustrate our main results.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhuomin Zhang ◽  
Zhan Zhou

In this paper, we consider the existence and multiplicity of solutions for a discrete Dirichlet boundary value problem involving the p , q -Laplacian. By using the critical point theory, we obtain the existence of infinitely many solutions under some suitable assumptions on the nonlinear term. Also, by our strong maximum principle, we can obtain the existence of infinitely many positive solutions.



2019 ◽  
Vol 17 (1) ◽  
pp. 1055-1064 ◽  
Author(s):  
Jiaoxiu Ling ◽  
Zhan Zhou

Abstract In this paper, by using critical point theory, we obtain some sufficient conditions on the existence of infinitely many positive solutions of the discrete Dirichlet problem involving the mean curvature operator. We show that the suitable oscillating behavior of the nonlinear term near at the origin and at infinity will lead to the existence of a sequence of pairwise distinct nontrivial positive solutions. We also give two examples to illustrate our main results.



2020 ◽  
Vol 40 (5) ◽  
pp. 537-548
Author(s):  
Dahmane Bouafia ◽  
Toufik Moussaoui

In this paper we study the existence of nontrivial solutions for a boundary value problem on the half-line, where the nonlinear term is sublinear, by using Ekeland's variational principle and critical point theory.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhenguo Wang ◽  
Zhan Zhou

This paper concerns the existence of solutions for the Dirichlet boundary value problems of p-Laplacian difference equations containing both advance and retardation depending on a parameter λ. Under some suitable assumptions, infinitely many solutions are obtained when λ lies in a given open interval. The approach is based on the critical point theory.



2006 ◽  
Vol 2006 ◽  
pp. 1-12
Author(s):  
Binggen Zhang ◽  
Qiuju Xing

We give some sufficient conditions for the existence of positive solutions of partial difference equationaAm+1,n+1+bAm,n+1+cAm+1,n−dAm,n+Pm,nAm−k,n−1=0by two different methods.





2021 ◽  
Vol 11 (1) ◽  
pp. 198-211
Author(s):  
Sijia Du ◽  
Zhan Zhou

Abstract Apartial discrete Dirichlet boundary value problem involving mean curvature operator is concerned in this paper. Under proper assumptions on the nonlinear term, we obtain some feasible conditions on the existence of multiple solutions by the method of critical point theory. We further separately determine open intervals of the parameter to attain at least two positive solutions and an unbounded sequence of positive solutions with the help of the maximum principle.



Sign in / Sign up

Export Citation Format

Share Document