scholarly journals On Homogeneous Combinations of Linear Recurrence Sequences

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2152
Author(s):  
Marie Hubálovská ◽  
Štěpán Hubálovský ◽  
Eva Trojovská

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2=Fn+1+Fn, for n≥0, where F0=0 and F1=1. There are several interesting identities involving this sequence such as Fn2+Fn+12=F2n+1, for all n≥0. In 2012, Chaves, Marques and Togbé proved that if (Gm)m is a linear recurrence sequence (under weak assumptions) and Gn+1s+⋯+Gn+ℓs∈(Gm)m, for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on ł and the parameters of (Gm)m. In this paper, we shall prove that if P(x1,…,xℓ) is an integer homogeneous s-degree polynomial (under weak hypotheses) and if P(Gn+1,…,Gn+ℓ)∈(Gm)m for infinitely many positive integers n, then s is bounded by an effectively computable constant depending only on ℓ, the parameters of (Gm)m and the coefficients of P.

Author(s):  
Japhet Odjoumani ◽  
Volker Ziegler

AbstractIn this paper we consider the Diophantine equation $$U_n=p^x$$ U n = p x where $$U_n$$ U n is a linear recurrence sequence, p is a prime number, and x is a positive integer. Under some technical hypotheses on $$U_n$$ U n , we show that, for any p outside of an effectively computable finite set of prime numbers, there exists at most one solution (n, x) to that Diophantine equation. We compute this exceptional set for the Tribonacci sequence and for the Lucas sequence plus one.


2016 ◽  
Vol 100 (114) ◽  
pp. 259-269
Author(s):  
Nurettin Irmak ◽  
Murat Alp

We introduce a novel fourth order linear recurrence sequence {Sn} using the two periodic binary recurrence. We call it ?pellans sequence? and then we solve the system ab+1=Sx, ac+1=Sy bc+1=Sz where a < b < c are positive integers. Therefore, we extend the order of recurrence sequence for this variant diophantine equations by means of pellans sequence.


Author(s):  
CLEMENS FUCHS ◽  
SEBASTIAN HEINTZE

Abstract Let $ (G_n)_{n=0}^{\infty } $ be a nondegenerate linear recurrence sequence whose power sum representation is given by $ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $ . We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions, $ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $ for $ n $ large enough.


1996 ◽  
Vol 39 (1) ◽  
pp. 35-46 ◽  
Author(s):  
G. R. Everest ◽  
I. E. Shparlinski

AbstractA study is made of sums of reciprocal norms of integral and prime ideal divisors of algebraic integer values of a generalised exponential polynomial. This includes the important special cases of linear recurrence sequences and general sums of S-units. In the case of an integral binary recurrence sequence, similar (but stronger) results were obtained by P. Erdős, P. Kiss and C. Pomerance.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1476 ◽  
Author(s):  
Lan Qi ◽  
Zhuoyu Chen

In this paper, we introduce the fourth-order linear recurrence sequence and its generating function and obtain the exact coefficient expression of the power series expansion using elementary methods and symmetric properties of the summation processes. At the same time, we establish some relations involving Tetranacci numbers and give some interesting identities.


2014 ◽  
Vol 30 (1) ◽  
pp. 79-86
Author(s):  
ARTURAS DUBICKAS ◽  

We show that if a is an even integer then for every ξ ∈ R the smallest limit point of the sequence ||ξan||∞n=1 does not exceed |a|/(2|a| + 2) and this bound is best possible in the sense that for some ξ this constant cannot be improved. Similar (best possible) bound is also obtained for the smallest limit point of the sequence ||ξxn||∞n=1, where (xn)∞n=1 satisfies the second order linear recurrence xn = axn−1 + bxn−2 with a, b ∈ N satisfying a > b. For the Fibonacci sequence (Fn)∞n=1 our result implies that supξ∈R lim infn→∞ ||ξFn|| = 1/5, and e.g., in case when a > 3 is an odd integer, b = 1 and θ := a/2 + p a 2/4 + 1 it shows that supξ∈R lim infn→∞ ||ξθn|| = (a − 1)/2a.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 788 ◽  
Author(s):  
Zhuoyu Chen ◽  
Lan Qi

The main aim of this paper is that for any second-order linear recurrence sequence, the generating function of which is f ( t ) = 1 1 + a t + b t 2 , we can give the exact coefficient expression of the power series expansion of f x ( t ) for x ∈ R with elementary methods and symmetry properties. On the other hand, if we take some special values for a and b, not only can we obtain the convolution formula of some important polynomials, but also we can establish the relationship between polynomials and themselves. For example, we can find relationship between the Chebyshev polynomials and Legendre polynomials.


2016 ◽  
pp. 1-30
Author(s):  
Alexi Block Gorman ◽  
Tyler Genao ◽  
Heesu Hwang ◽  
Noam Kantor ◽  
Sarah Parsons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document