scholarly journals Analytical Methods for Nonlinear Evolution Equations in Mathematical Physics

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2211
Author(s):  
Khaled A. Gepreel

In this article, we will apply some of the algebraic methods to find great moving solutions to some nonlinear physical and engineering questions, such as a nonlinear (1 + 1) Ito integral differential equation and (1 + 1) nonlinear Schrödinger equation. To analyze practical solutions to these problems, we essentially use the generalized expansion approach. After various W and G options, we get several clear means of estimating the plentiful nonlinear physics solutions. We present a process like-direct expansion process-method of expansion. In the particular case of W′=λG, G′=μW in which λ and μ are arbitrary constants, we use the expansion process to build some new exact solutions for nonlinear equations of growth if it fulfills the decoupled differential equations.


2010 ◽  
Vol 52 (1) ◽  
pp. 110-121 ◽  
Author(s):  
F. KHANI ◽  
M. T. DARVISHI ◽  
A. FARMANY ◽  
L. KAVITHA

AbstractThe Exp-function method is applied to construct a new type of solution of the coupled (2+1)-dimensional nonlinear system of Schrödinger equations. It is shown that the method provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yinghui He

Based on the F-expansion method with a new subequation, an improved F-expansion method is introduced. As illustrative examples, some new exact solutions expressed by the Jacobi elliptic function of the Kudryashov-Sinelshchikov equation are obtained. When the modulusmof the Jacobi elliptic function is driven to the limits 1 and 0, some exact solutions expressed by hyperbolic function and trigonometric function can also be obtained. The method is straightforward and concise and is promising and powerful for other nonlinear evolution equations in mathematical physics.



2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.





2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Mei Zhao

A generalized(G′/G)-expansion method is proposed to seek the exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the Zakharov equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are obtained. This method can also be applied to other nonlinear evolution equations in mathematical physics.



2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fan Niu ◽  
Jianming Qi ◽  
Zhiyong Zhou

Finding exact solutions of nonlinear equations plays an important role in nonlinear science, especially in engineering and mathematical physics. In this paper, we employed the complex method to get eight exact solutions of the modified BBM equation for the first time, including two elliptic function solutions, two simply periodic solutions, and four rational function solutions. We used the exp − ϕ z -expansion methods to get fourteen forms of solutions of the modified BBM equation. We also used the sine-cosine method to obtain eight styles’ exact solutions of the modified BBM equation. Only the complex method can obtain elliptic function solutions. We believe that the complex method presented in this paper can be more effectively applied to seek solutions of other nonlinear evolution equations.



Author(s):  
Ahmet Bekir ◽  
Esin Aksoy

The main goal of this paper is to develop subequation method for solving nonlinear evolution equations of time-fractional order. We use the subequation method to calculate the exact solutions of the time-fractional Burgers, Sharma–Tasso–Olver, and Fisher's equations. Consequently, we establish some new exact solutions for these equations.



2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Qazi Mahmood Ul Hassan ◽  
Jamshad Ahmad ◽  
Muhammad Shakeel

We use the fractional derivatives in Caputo’s sense to construct exact solutions to fractional fifth order nonlinear evolution equations. A generalized fractional complex transform is appropriately used to convert this equation to ordinary differential equation which subsequently resulted in a number of exact solutions.



Sign in / Sign up

Export Citation Format

Share Document