scholarly journals A Navier–Stokes-Type Problem with High-Order Elliptic Operator and Applications

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2256
Author(s):  
Maria Alessandra Ragusa ◽  
Veli B. Shakhmurov

The existence, uniqueness and uniformly Lp estimates for solutions of a high-order abstract Navier–Stokes problem on half space are derived. The equation involves an abstract operator in a Banach space E and small parameters. Since the Banach space E is arbitrary and A is a possible linear operator, by choosing spaces E and operators A, the existence, uniqueness and Lp estimates of solutions for numerous classes of Navier–Stokes type problems are obtained. In application, the existence, uniqueness and uniformly Lp estimates for the solution of the Wentzell–Robin-type mixed problem for the Navier–Stokes equation and mixed problem for degenerate Navier–Stokes equations are established.

2018 ◽  
Vol 10 (4) ◽  
pp. 128
Author(s):  
Biruk Petros

Solution of Navier-Stokes equation is found by introducing new method for solving differential equations. This new method is writing periodic scalar function in any dimensions and any dimensional vector fields as the sum of sine and cosine series with proper coefficients. The method is extension of Fourier series representation for one variable function to multi-variable functions and vector fields.Before solving Navier-Stokes equations we introduce a new technique for writing periodic scalar functions or vector fields as the sum of cosine and sine series with proper coefficients. Fourier series representation is background for our new technique.Periodic nature of initial velocity for Navier-Stokes problem helps us write the vector field in the form of cosine and sine series sum which simplify the problem. 


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


2010 ◽  
Vol 20 (07) ◽  
pp. 1049-1087 ◽  
Author(s):  
BORIS HASPOT

In this paper, we consider the compressible Navier–Stokes equation with density-dependent viscosity coefficients and a term of capillarity introduced formally by van der Waals in Ref. 51. This model includes at the same time the barotropic Navier–Stokes equations with variable viscosity coefficients, shallow-water system and the model introduced by Rohde in Ref. 46. We first study the well-posedness of the model in critical regularity spaces with respect to the scaling of the associated equations. In a functional setting as close as possible to the physical energy spaces, we prove global existence of solutions close to a stable equilibrium, and local in time existence of solutions with general initial data. Uniqueness is also obtained.


Author(s):  
Ekaterina Valer'evna Fomenko ◽  
Albert Hamed-Harisovich Nugmanov ◽  
Thi Sen Nguyen ◽  
Aleksanyan Igor Yuryevich Aleksanyan

The article touches upon the application of the numerical finite difference method for solving Navier-Stokes equation in case of one-dimensional problem of passing a cooled viscoelastic material inside circular nozzles. There have been analyzed the specific features of using the method and presented the results of its application. The object of study was not chosen at random, because viscous properties of raw gluten are variable and depend on the temperature, chemical composition and properties of the feedstock. Working not properly with the object of research (phenomenon, process), but with its model helps to characterize its properties and behavior in various situations relatively quickly and without significant costs. The need to identify patterns of internal heat and mass transfer, which is based on studying the kinetics of the process, is obvious for physic-mathematical modeling of heat and mass transfer processes of wheat gluten granulation, in particular, analyzing the mechanism of moisture removal during its drying under radiation power supply. The results of the conducted research are consistent with the available data on the subject, and the suggested approach to solving the problem of choosing rational hydrodynamic regimes has been applied due to the difficulty of experimental determining the velocity fields and problematic analyzing the system of hydrodynamic differential Navier-Stokes equations with variable proportionality ratios.


2020 ◽  
Vol 8 (2) ◽  
pp. 59-66
Author(s):  
I.A. Ostashko ◽  
◽  
A.P. Naumenko ◽  

The article discusses aeromechanical processes in a centrifugal mill at different speeds of rotation in order to establish the regularities of the kinematics of the flow of a heterogeneous medium in the grinding chamber of the mill, its interaction with the working body and the classification of the crushed material when removed from the grinding chamber. The study of gas dynamics of processes in the flow path of a centrifugal mill has been carried out. The trajectories of streams, velocity and pressure fields were investigated. The influence of various factors on the efficiency of the classification and the maximum diameter of particles removed from the grinding chamber was revealed. The regularities of the movement of a heterogeneous medium, its interaction with the working body and the classification of the crushed material when removed from the grinding chamber were established, the gas dynamics of processes in the flow path of a centrifugal mill was studied. The main way to increase the speed of air flows is to increase the flow of transport air, which in turn affects the aerodynamics of the processes in the grinding chamber of the mill, productivity and grinding time of the material. Processes of gas dynamics in a compressed medium of the flow path of a centrifugal mill were described by a system of non-stationary Navier-Stokes equations of continuity, energy and equation of state in approximation of the turbulence model. Analysis of the results of mathematical modeling of processes in the working chamber showed that the air flow carries out a complex rotational movement in the transverse and longitudinal sections with the formation of local zones of increased turbulence. As a result of numerical modeling and analysis of the results, factors have been identified that make it possible to intensify the process of material grinding. The flows have a pronounced ballistic trajectory. They start their movement from the center of the bottom of the grinding chamber and move along the walls of the chamber while rotating in a spiral and moving down the wall of the hollow shaft. It is observed that the point of separation of the flows rotating in the lower part of the grinding chamber and the flows moving in the upper part is on 60% of the height of the chamber. Keywords: modeling, centrifugal mill, finite element method, Navier-Stokes equation.


Sign in / Sign up

Export Citation Format

Share Document