centrifugal mill
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012158
Author(s):  
E N Bondarchuk ◽  
A S Pochtar ◽  
S V Vinogradov ◽  
V I Popov

Abstract The 1 MW experimental stand was modernized with a scroll swirler and a crushed fuel supply system. Comparative data on combustion and gasification of coal fuel crushed in high-stress mills - disintegrator, vibrocentrifugal and hammer mill - at a stand with a thermal power of 1 MW were obtained. The experiments used coal of the Kuznetsk Basin, grade D, with technical characteristics: Wr, % = 5.4; Ar, %=22.3; Vr, % = 32.3; Qsr, MJ/kg = 20.0. Elemental analysis showed that: Cr, %=54.6; Hr, % = 4.1; Nr, % = 1.3; Sr, % = 0.5; Or = 11.8. In experiments with grinding coal on a disintegrator mill, the value of H2 = 4.5 vol.% and CO = 9.4 vol.%, when grinding in a vibro-centrifugal mill, the values of H2 = 0.6 vol.% and CO = 5.8 vol.%, when grinding in a hammer mill, the values of H2 = 0.3 vol.% and CO = 2.8 vol.%. When studying the combustion of mechanochemically treated coal samples, it was found that, all other things being equal, the gasification parameters, namely, the gas concentration and the distribution of temperature zones, depend strongly on the type of equipment used for processing. In particular, processing to approximately the same degree of fineness in mechanical mills-activators with constrained impact and in free impact mills (disintegrators) resulted in different flame parameters.


Author(s):  
V.I. Golik ◽  
A.V. Titova

Relevance. The efficiency of using the products of subsoil exploitation is a factor in strengthening the mineral resource base of the mining industry. The success of improving ore preparation technologies is associated with the activation of mineral raw materials in mills, including impact mills – disintegrators. A fundamentally new approach to ore processing technology includes a combination of grinding methods in mills and other activators. The issues of increasing the activity of substances on the basis of combination form an urgent scientific and industrial problem. The aim of the study of the phenomenon of combined activation is to search for the possibility of increasing the level of activation, to ensure the stability of the acquired activity and to establish patterns of relationships between the activation processes and the technological processes of using mineral raw materials. Objects: products of the development of deposits of solid mineral raw materials in various mining sectors of the national economy. Methods: Laboratory, semi-industrial and industrial experiment using improved equipment for the activation of mineral raw materials. Results. The concepts of “mechanical activation” in mills and “activation with large mechanical energy” in a disintegrator are detailed. An assessment is given to the directions of improving the mills. The results of mechanochemical activation of powders oxides in a planetary centrifugal mill “Aktivator-2s” are given. The practice of activating mineral raw materials with a combination of activators of various types is described. It has been established that the efficiency of combining mills depends on the initial size of the crushed material and equipment options are recommended depending on this. It is shown that the combination of drum and vibration mills reduced the energy consumption of the product. The results of the combination and the vibrating mill in the technological chain of the concrete complex are presented. The algorithm for the combined activation of mineral raw materials is illustrated by the example of the technology applied at the mine, which includes grinding, mixing binders, inert aggregates and grout, as well as transporting the concrete mixture to the place of use. As a quantitative indicator of activation, an equivalent of activity or a proportional ratio of the combined components is proposed. The efficiency of using solid mineral raw materials increases when it is prepared in activators.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042088
Author(s):  
A V Ozolin ◽  
E G Sokolov

Abstract The effect of tungsten nanoparticles on the kinetics of sintering of the Sn-Cu-Co-W powder material used as a binder in diamond tools was studied. The W16,5 grade tungsten powder was mechanically activated in the AGO-2U planetary centrifugal mill for 60 minutes at the carrier rotation frequencies of 800 RPM. The mixture of tungsten, tin, copper, and cobalt powders was compacted by static pressing in press dies and then sintered in vacuum at the temperature of 820°C. The morphology and sizes of powder particles, as well as the structure of the sintered samples, were studied by the methods of scanning electronic microscopy. It has been demonstrated that tungsten nanoparticles have a noticeable effect on the process of dissolution-reprecipitation of cobalt in liquid-phase sintering.


2021 ◽  
Vol 13 (2) ◽  
pp. 292-303
Author(s):  
Valery KHETAGUROV ◽  
◽  
Evgeny KAMENETSKY ◽  
Mikhail GEGELASHVILI ◽  
Azamat MARZOEV ◽  
...  

Introduction. The huge energy costs of fine and ultrafine grinding operations have led to numerous studies aimed at developing new devices and methods for producing powdered materials. The first way leads to an increase in specific productivity while maintaining energy consumption at approximately the same level. The second way allows not only to increase the specific productivity, but also to reduce the specific energy consumption, since with a decrease in the exposure time, the body is more easily deformed and destroyed. The grinders in which the intensification of the destruction process is carried out in the first way can include planetary and vibrating mills. The second method of intensification is used in jet and various types of centrifugal mills. It is determined that vertical centrifugal mills are the equipment of a new type that can effectively perform grinding operations at high technological indicators and low energy consumption. The purpose of the research. Development of measures for obtaining a finely dispersed product by destroying mineral raw materials in vertical centrifugal mills by mechanical means. Research methodology. The paper uses a comprehensive research method: analysis of the state of grinding equipment according to literary and patent sources; development of mathematical models of the movement of bulk material in the working space of a vertical centrifugal mill based on the Navie-Stokes equations; computer modeling of the movement of the crushed material using the OpenFOAM package for solving hydrodynamic equations; a solver program was created to perform calculations, implementing the SIMPLER algorithm and using the MRF model; laboratory experiments; granulometric method for the analysis of grinding products; fractional analysis of crushed material with a grain size of 0.08 mm using an X-ray analytical centrifuge ВrооkhаvеnBI-ХDС. The development of measures for the effective evacuation of the crushed product from the working space of a centrifugal mill was evaluated by comparative tests of mills using various design solutions. Research results and discussion 1. It is established that vertical centrifugal mills are the devices of a new type capable of effectively performing grinding operations at high technological indicators and low energy consumption. 2. A mathematical model of the movement of bulk material in the working space of a vertical centrifugal mill has been developed based on the Navier-Stokes equations, which allows determining the speed and direction of movement of material layers at any point in the working space, the energy costs for their movement, the influence of the height of the material column on the nature of its movement in the space above the rotor. 3. The directions of increasing the efficiency of grinding mineral raw materials in a vertical centrifugal mill are determined by reducing the number of radial ribs installed in the cavity of the mill rotor; making cutouts in the radial ribs of the rotor, in the area near the rotor hub; installing coaxial rings in the working space of the mill above the rotor. 4. A method of effective evacuation of the crushed product from the mill body by installing additional screening surfaces in the peripheral part of the working space of the mill has been developed. 5. For the first time, the distribution of the granulometric composition of fine and medium - dispersed crushed product obtained as a result of processing lump dolomite in a centrifugal mill was obtained. It was found that particles with a size class of -0.08 + 0.03 mm are absent in the output of the crushed product from the mill. Conclusions. A mass-produced vertical centrifugal mill will find its effective application at enterprises of the Russian Federation for the preparation of powdered materials and will allow to obtain a significant effect by reducing the price of the final product, simplicity of design and maintenance of equipment, as well as small occupied production areas.


10.5219/1455 ◽  
2021 ◽  
Vol 15 ◽  
pp. 199-209
Author(s):  
Jatmiko Eko Witoyo ◽  
Bambang Dwi Argo ◽  
Sudarminto Setyo Yuwono ◽  
Simon Bambang Widjanarko

This study aimed at investigating the effects of polishing conditions on the physicochemical properties of polished yellow konjac flour (PYKF) with a centrifugal mill using Central Composite Design-Response Surface Methodology (CCD-RSM). Micro-mill milled yellow konjac flour (MMYKF) mass and polishing cycles were the independent variables, with four observed responses (calcium oxalate, viscosity, degree of whiteness (DoW), and glucomannan). The lower limit (-1) and upper limit (+1) for MMYKF mass in this study are 10 and 15 kg, respectively, while the -1 and +1 for the polishing cycle are three times, and seven times, respectively. The optimum prediction occurred at 10 kg of MMYKF mass and six times the polishing cycle with the following characteristics: 0.52 ±0.00% w.b. calcium oxalate, 20362.00 ±16.00 cP viscosity, 62.22 ±0.01 DoW, and 69.43 ±0.02% d.b. glucomannan content, which agreed with the verification data with p-value >0.05 for all observed responses using the paired T-test. Polishing using a centrifugal mill is feasible and promises to be scaled up to industrial scale for yellow konjac flour polishing before the wet extraction process. 


2021 ◽  
Vol 13 (1) ◽  
pp. 119-124
Author(s):  
David MINASYAN ◽  
◽  
Alana ELOEVA ◽  
Sergey NAZAROV ◽  
Pavel SKVORTSOV ◽  
...  

Introduction. Improving the performance, increasing productivity, reducing the metal consumption of grinding equipment and other mining machines is usually a very expensive process. It requires a large amount of development work, the production of prototype machines, and a large amount of experimental research. In this regard, one of the most important tasks is to simulate the movement of bulk material in operations for processing minerals in various equipment. In such modeling, the discrete element method (DEM) is widely used. The purpose of the research is to compare the models of the movement of the crushed material in the body of a vertical centrifugal mill. Research methodology The motion of the bulk medium in a vertical centrifugal mill was modeled using two models. In the first model, the cylindrical body of the centrifugal mill was assumed to be stationary, and on its surface and on the entire surface of the rotor, conditions were set for the absence of a relative speed of movement of the crushed material. In the second model, a hydrodynamic model was used to describe the motion of a granular material as a viscous incompressible liquid with a compression ratio that depends on the pres-sure. In this model, the viscosity coefficient is represented as consisting of two terms: a constant (analogous to dynamic viscosity) and an excess pressure over hydrostatic pressure. Research results It is established that both models give the same character of the movement of the material in the mill body. It is determined that the absolute velocity of the material movement near the walls and near the mill rotor is approximately the same for both models, but in the data obtained using the hydrodynamic model, as the material moves away from the walls and the rotor, it slows down more than for the model using the discrete element method. It is revealed that the absolute velocity of the material movement near the walls and at the axis of the mill rotor is approximately the same for both models, but in the data obtained using the hydrodynamic model, as it moves away from the walls and the rotor, the material slows down significantly more than for the model using the discrete element method. Based on the simulation results, it can be concluded that for a more accurate simulation of the processes occurring during the rapid movement of bulk material in the grinding equipment, it is preferable to use a model using the discrete element method. It is advisable to use the hydrodynamic model for conducting a large number of search dawns or as a predicate model that will allow you to quickly set the initial velocity values for particles in a model using the discrete element method. Conclusions 1. A hydrodynamic model of the motion of a bulk medium in a vertical centrifugal mill, represented as a viscous incompressible liquid with a compression coefficient depending on the pressure has been developed. 2. It is established that for a more correct simulation of the processes occurring during the rapid movement of bulk material in the grinding equipment, it is preferable to use a model using the discrete element method. At the same time, it is advisable to use the hydrodynamic model for conducting a large number of search calculations or as a predicate model that will allow you to quickly set the initial velocity values for particles in a model using the discrete element method.


2021 ◽  
Vol 296 ◽  
pp. 07012
Author(s):  
Nataliya Lesnikova ◽  
Olga Chugunova ◽  
Valentina Lapina ◽  
Tatiana Kotova ◽  
Ekaterina Pastushkova

The study focuses on obtaining the finely ground wheat germ flour mix by employing dry mechanical activation. During the study, wheat germ is ground using DESI-11 disintegrator and mechanically activated in PM-10 centrifugal mill with the rotor speed of 1050 rpm. According to the study findings, the finely ground wheat germ flour mix obtained by dry mechanical activation possesses increased bulk density and improved water absorption capacity when compared to the product obtained from wheat germ without mechanical activation applied. The average particle size is reduced from 114 μm to 52 μm. The study findings indicate that obtaining the finely ground wheat germ flour mix by dry mechanical activation prevents the occurrence of the caking effect as well as improves the quality of baked products.


2020 ◽  
Vol 8 (2) ◽  
pp. 59-66
Author(s):  
I.A. Ostashko ◽  
◽  
A.P. Naumenko ◽  

The article discusses aeromechanical processes in a centrifugal mill at different speeds of rotation in order to establish the regularities of the kinematics of the flow of a heterogeneous medium in the grinding chamber of the mill, its interaction with the working body and the classification of the crushed material when removed from the grinding chamber. The study of gas dynamics of processes in the flow path of a centrifugal mill has been carried out. The trajectories of streams, velocity and pressure fields were investigated. The influence of various factors on the efficiency of the classification and the maximum diameter of particles removed from the grinding chamber was revealed. The regularities of the movement of a heterogeneous medium, its interaction with the working body and the classification of the crushed material when removed from the grinding chamber were established, the gas dynamics of processes in the flow path of a centrifugal mill was studied. The main way to increase the speed of air flows is to increase the flow of transport air, which in turn affects the aerodynamics of the processes in the grinding chamber of the mill, productivity and grinding time of the material. Processes of gas dynamics in a compressed medium of the flow path of a centrifugal mill were described by a system of non-stationary Navier-Stokes equations of continuity, energy and equation of state in approximation of the turbulence model. Analysis of the results of mathematical modeling of processes in the working chamber showed that the air flow carries out a complex rotational movement in the transverse and longitudinal sections with the formation of local zones of increased turbulence. As a result of numerical modeling and analysis of the results, factors have been identified that make it possible to intensify the process of material grinding. The flows have a pronounced ballistic trajectory. They start their movement from the center of the bottom of the grinding chamber and move along the walls of the chamber while rotating in a spiral and moving down the wall of the hollow shaft. It is observed that the point of separation of the flows rotating in the lower part of the grinding chamber and the flows moving in the upper part is on 60% of the height of the chamber. Keywords: modeling, centrifugal mill, finite element method, Navier-Stokes equation.


Sign in / Sign up

Export Citation Format

Share Document