scholarly journals Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 816
Author(s):  
Eunju Hwang

This paper considers stationary autoregressive (AR) models with heavy-tailed, general GARCH (G-GARCH) or augmented GARCH noises. Limit theory for the least squares estimator (LSE) of autoregression coefficient ρ=ρn is derived uniformly over stationary values in [0,1), focusing on ρn→1 as sample size n tends to infinity. For tail index α∈(0,4) of G-GARCH innovations, asymptotic distributions of the LSEs are established, which are involved with the stable distribution. The convergence rate of the LSE depends on 1−ρn2, but no condition on the rate of ρn is required. It is shown that, for the tail index α∈(0,2), the LSE is inconsistent, for α=2, logn/(1−ρn2)-consistent, and for α∈(2,4), n1−2/α/(1−ρn2)-consistent. Proofs are based on the point process and the asymptotic properties in AR models with G-GARCH errors. However, this present work provides a bridge between pure stationary and unit-root processes. This paper extends the existing uniform limit theory with three issues: the errors have conditional heteroscedastic variance; the errors are heavy-tailed with tail index α∈(0,4); and no restriction on the rate of ρn is necessary.

2014 ◽  
Vol 31 (4) ◽  
pp. 880-890 ◽  
Author(s):  
Rongmao Zhang ◽  
Shiqing Ling

It is well known that the least squares estimator (LSE) of an AR(p) model with i.i.d. (independent and identically distributed) noises is n1/αL(n)-consistent when the tail index α of the noise is within (0,2) and is n1/2-consistent when α ≥ 2, where L(n) is a slowly varying function. When the noises are not i.i.d., however, the case is far from clear. This paper studies the LSE of AR(p) models with heavy-tailed G-GARCH(1,1) noises. When the tail index α of G-GARCH is within (0,2), it is shown that the LSE is not a consistent estimator of the parameters, but converges to a ratio of stable vectors. When α ε [2,4], it is shown that the LSE is n1–2/α-consistent if α ε (2,4), logn-consistent if α = 2, and n1/2 / logn-consistent if α = 4, and its limiting distribution is a functional of stable processes. Our results are significantly different from those with i.i.d. noises and should warn practitioners in economics and finance of the implications, including inconsistency, of heavy-tailed errors in the presence of conditional heterogeneity.


2009 ◽  
Vol 25 (5) ◽  
pp. 1208-1227 ◽  
Author(s):  
Guodong Li ◽  
Wai Keung Li

This paper considers a local least absolute deviation estimation for unit root processes with generalized autoregressive conditional heteroskedastic (GARCH) errors and derives its asymptotic properties under only finite second-order moment for both errors and innovations. When the innovations are symmetrically distributed, the asymptotic distribution of the estimated unit root is shown to be a functional of a bivariate Brownian motion, and then two unit root tests are derived. The simulation results demonstrate that the tests outperform those based on the Gaussian quasi maximum likelihood estimators with heavy-tailed innovations and those based on the simple least absolute deviation estimators.


2017 ◽  
Vol 34 (5) ◽  
pp. 1065-1100 ◽  
Author(s):  
Offer Lieberman ◽  
Peter C.B. Phillips

Lieberman and Phillips (2017; LP) introduced a multivariate stochastic unit root (STUR) model, which allows for random, time varying local departures from a unit root (UR) model, where nonlinear least squares (NLLS) may be used for estimation and inference on the STUR coefficient. In a structural version of this model where the driver variables of the STUR coefficient are endogenous, the NLLS estimate of the STUR parameter is inconsistent, as are the corresponding estimates of the associated covariance parameters. This paper develops a nonlinear instrumental variable (NLIV) as well as GMM estimators of the STUR parameter which conveniently addresses endogeneity. We derive the asymptotic distributions of the NLIV and GMM estimators and establish consistency under similar orthogonality and relevance conditions to those used in the linear model. An overidentification test and its asymptotic distribution are also developed. The results enable inference about structural STUR models and a mechanism for testing the local STUR model against a simple UR null, which complements usual UR tests. Simulations reveal that the asymptotic distributions of the NLIV and GMM estimators of the STUR parameter as well as the test for overidentifying restrictions perform well in small samples and that the distribution of the NLIV estimator is heavily leptokurtic with a limit theory which has Cauchy-like tails. Comparisons of STUR coefficient and standard UR coefficient tests show that the one-sided UR test performs poorly against the one-sided STUR coefficient test both as the sample size and departures from the null rise. The results are applied to study the relationships between stock returns and bond spread changes.


Statistics ◽  
2014 ◽  
Vol 49 (6) ◽  
pp. 1221-1242 ◽  
Author(s):  
Danijel Grahovac ◽  
Mofei Jia ◽  
Nikolai Leonenko ◽  
Emanuele Taufer

2019 ◽  
Vol 35 (6) ◽  
pp. 1234-1270 ◽  
Author(s):  
Sébastien Fries ◽  
Jean-Michel Zakoian

Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes and, therefore, provide a convenient framework for modelling bubbles in economic and financial time series. We investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gouriéroux and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We derive a portmanteau test to check the validity of the estimated AR representation and propose a method based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal, or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 70
Author(s):  
Mei Ling Huang ◽  
Xiang Raney-Yan

The high quantile estimation of heavy tailed distributions has many important applications. There are theoretical difficulties in studying heavy tailed distributions since they often have infinite moments. There are also bias issues with the existing methods of confidence intervals (CIs) of high quantiles. This paper proposes a new estimator for high quantiles based on the geometric mean. The new estimator has good asymptotic properties as well as it provides a computational algorithm for estimating confidence intervals of high quantiles. The new estimator avoids difficulties, improves efficiency and reduces bias. Comparisons of efficiencies and biases of the new estimator relative to existing estimators are studied. The theoretical are confirmed through Monte Carlo simulations. Finally, the applications on two real-world examples are provided.


2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Alexander Kushnir ◽  
Alexander Varypaev

The publication is devoted to studying asymptotic properties of statistical estimates of the distribution parameters u∈Rq of a multidimensional random stationary time series zt∈Rm, t∈ℤ satisfying the strong mixing conditions. We consider estimates u^nδ(z¯n), z¯n=(z1T,…,znT)T∈Rmn that provide in asymptotic n→∞ the maximum values for some objective functions Qn(z¯n;u), which have properties similar to the well-known property of local asymptotic normality. These estimates are constructed by solving the equations δn(z¯n;u)=0, where δn(z¯n;u) are arbitrary functions for which δn(z¯n;u)−gradhQn(z¯n;u+n−1/2h)→0(n→∞) in Pn,u(z¯n)-probability uniformly on u∈U, were U is compact in Rq. In many cases, the estimates u^nδ(z¯n) have the same asymptotic properties as well-known M-estimates defined by equations u^nQ(z¯n)=arg maxu∈UQn(z¯n;u) but often can be much simpler computationally. We consider an algorithmic method for constructing estimates u^nδ(z¯n), which is similar to the accumulation method first proposed by R. Fischer and rigorously developed by L. Le Cam. The main theoretical result of the article is the proof of the theorem, in which conditions of the asymptotic normality of estimates u^nδ(z¯n) are formulated, and the expression is proposed for their matrix of asymptotic mean-square deviations limn→∞nEn,u{(u^δ(z¯n)−u)(u^δ(z¯n)−u)T}.


2014 ◽  
Vol 46 (3) ◽  
pp. 846-877 ◽  
Author(s):  
Vicky Fasen

We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {hn, 2hn,…, nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞, or at a constant time grid where hn = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.


Sign in / Sign up

Export Citation Format

Share Document