scholarly journals An Optimized Triggering Algorithm for Event-Triggered Control of Networked Control Systems

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1262
Author(s):  
Sunil Kumar Mishra ◽  
Amitkumar V. Jha ◽  
Vijay Kumar Verma ◽  
Bhargav Appasani ◽  
Almoataz Y. Abdelaziz ◽  
...  

This paper presents an optimized algorithm for event-triggered control (ETC) of networked control systems (NCS). Initially, the traditional backstepping controller is designed for a generalized nonlinear plant in strict-feedback form that is subsequently extended to the ETC. In the NCS, the controller and the plant communicate with each other using a communication network. In order to minimize the bandwidth required, the number of samples to be sent over the communication channel should be reduced. This can be achieved using the non-uniform sampling of data. However, the implementation of non-uniform sampling without a proper event triggering rule might lead the closed-loop system towards instability. Therefore, an optimized event triggering algorithm has been designed such that the system states are always forced to remain in stable trajectory. Additionally, the effect of ETC on the stability of backstepping control has been analyzed using the Lyapunov stability theory. Two case studies on an inverted pendulum system and single-link robot system have been carried out to demonstrate the effectiveness of the proposed ETC in terms of system states, control effort and inter-event execution time.

Author(s):  
Saeid Ghorbani ◽  
Ali Akbar Safavi ◽  
S. Vahid Naghavi

In this paper, the problem of event-triggered robust model predictive control (MPC) was examined for a class of Lipchitz nonlinear networked control systems (NCS) with network-induced delays and subject to external disturbances. An event-triggering scheme for a continuous-time NCS was proposed, which reduced the communication traffic and computational burden of the MPC algorithm simultaneously. In comparison with the existing event-triggered nonlinear MPC (NMPC) approaches, the controller in this paper was designed as a state feedback control law, which minimized a “worst-case” performance index over an infinite horizon subject to constraints on the control input. The controller and event generator parameters were developed as a convex optimization problem, encompassing some linear matrix inequalities (LMIs). Simulation results showed that the proposed event-triggering NMPC scheme preserved closed-loop performance while reducing the communication rate and the computational time.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lina Rong ◽  
Chengda Yu ◽  
Pengfei Guo ◽  
Hui Gao

The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account. The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which demonstrate the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document