scholarly journals Second-Order Weak Approximations of CKLS and CEV Processes by Discrete Random Variables

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1337
Author(s):  
Gytenis Lileika ◽  
Vigirdas Mackevičius

In this paper, we construct second-order weak split-step approximations of the CKLS and CEV processes that use generation of a three−valued random variable at each discretization step without switching to another scheme near zero, unlike other known schemes (Alfonsi, 2010; Mackevičius, 2011). To the best of our knowledge, no second-order weak approximations for the CKLS processes were constructed before. The accuracy of constructed approximations is illustrated by several simulation examples with comparison with schemes of Alfonsi in the particular case of the CIR process and our first-order approximations of the CKLS processes (Lileika– Mackevičius, 2020).

Author(s):  
LEV V. UTKIN

A new hierarchical uncertainty model for combining different evidence about a system of statistically independent random variable is studied in the paper. It is assumed that the first-order level of the model is represented by sets of lower and upper previsions (expectations) of random variables and the second-order level is represented by sets of lower and upper probabilities which can be viewed as confidence weights for interval-valued expectations of the first-order level. The model is rather general and allows us to compute probability bounds and "average" bounds for previsions of a function of random variables. A numerical example illustrates this model.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 125
Author(s):  
Vigirdas Mackevičius ◽  
Gabrielė Mongirdaitė

In this paper, we construct first- and second-order weak split-step approximations for the solutions of the Wright–Fisher equation. The discretization schemes use the generation of, respectively, two- and three-valued random variables at each discretization step. The accuracy of constructed approximations is illustrated by several simulation examples.


Author(s):  
Zhangli Hu ◽  
Xiaoping Du

In traditional reliability problems, the distribution of a basic random variable is usually unimodal; in other words, the probability density of the basic random variable has only one peak. In real applications, some basic random variables may follow bimodal distributions with two peaks in their probability density. When binomial variables are involved, traditional reliability methods, such as the first-order second moment (FOSM) method and the first-order reliability method (FORM), will not be accurate. This study investigates the accuracy of using the saddlepoint approximation (SPA) for bimodal variables and then employs SPA-based reliability methods with first-order approximation to predict the reliability. A limit-state function is at first approximated with the first-order Taylor expansion so that it becomes a linear combination of the basic random variables, some of which are bimodally distributed. The SPA is then applied to estimate the reliability. Examples show that the SPA-based reliability methods are more accurate than FOSM and FORM.


1975 ◽  
Vol 7 (4) ◽  
pp. 830-844 ◽  
Author(s):  
Lajos Takács

A sequence of random variables η0, η1, …, ηn, … is defined by the recurrence formula ηn = max (ηn–1 + ξn, 0) where η0 is a discrete random variable taking on non-negative integers only and ξ1, ξ2, … ξn, … is a semi-Markov sequence of discrete random variables taking on integers only. Define Δ as the smallest n = 1, 2, … for which ηn = 0. The random variable ηn can be interpreted as the content of a dam at time t = n(n = 0, 1, 2, …) and Δ as the time of first emptiness. This paper deals with the determination of the distributions of ηn and Δ by using the method of matrix factorisation.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1313
Author(s):  
Wei Liu ◽  
Yong Zhang

In this paper, we obtain the law of iterated logarithm for linear processes in sub-linear expectation space. It is established for strictly stationary independent random variable sequences with finite second-order moments in the sense of non-additive capacity.


Author(s):  
Therese M. Donovan ◽  
Ruth M. Mickey

This chapter focuses on probability mass functions. One of the primary uses of Bayesian inference is to estimate parameters. To do so, it is necessary to first build a good understanding of probability distributions. This chapter introduces the idea of a random variable and presents general concepts associated with probability distributions for discrete random variables. It starts off by discussing the concept of a function and goes on to describe how a random variable is a type of function. The binomial distribution and the Bernoulli distribution are then used as examples of the probability mass functions (pmf’s). The pmfs can be used to specify prior distributions, likelihoods, likelihood profiles and/or posterior distributions in Bayesian inference.


2015 ◽  
Vol 29 (3) ◽  
pp. 309-327 ◽  
Author(s):  
Tiantian Mao ◽  
Kai Wang Ng ◽  
Taizhong Hu

Generalized quantiles of a random variable were defined as the minimizers of a general asymmetric loss function, which include quantiles, expectiles and M-quantiles as their special cases. Expectiles have been suggested as potentially better alternatives to both Value-at-Risk and expected shortfall risk measures. In this paper, we first establish the first-order expansions of generalized quantiles for extreme risks as the confidence level α↑ 1, and then investigate the first-order and/or second-order expansions of expectiles of an extreme risk as α↑ 1 according to the underlying distribution belonging to the max-domain of attraction of the Fréchet, Weibull, and Gumbel distributions, respectively. Examples are also presented to examine whether and how much the first-order expansions have been improved by the second-order expansions.


2021 ◽  
pp. 109-124
Author(s):  
Timothy E. Essington

The chapter “Random Variables and Probability” serves as both a review and a reference on probability. The random variable is the core concept in understanding probability, parameter estimation, and model selection. This chapter reviews the basic idea of a random variable and discusses the two main kinds of random variables: discrete random variables and continuous random variables. It covers the distinction between discrete and continuous random variables and outlines the most common probability mass or density functions used in ecology. Advanced sections cover distributions such as the gamma distribution, Student’s t-distribution, the beta distribution, the beta-binomial distribution, and zero-inflated models.


2020 ◽  
Author(s):  
Ahmad Sudi Pratikno

Probability to learn someone's chance in getting or winning an event. In the discrete random variable is more identical to repeated experiments, to form a pattern. Discrete random variables can be calculated as the probability distribution by calculating each value that might get a certain probability value.


Sign in / Sign up

Export Citation Format

Share Document