scholarly journals Unextendible Sets of Mutually Unbiased Basis Obtained from Complete Subgraphs

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1388
Author(s):  
Andrés García ◽  
Pablo Carlos López

We propose a method, based on the search and identification of complete subgraphs of a regular graph, to obtain sets of Pauli operators whose eigenstates form unextendible complete sets of mutually unbiased bases of n-qubit systems. With this method we can obtain results for complete and inextensible sets of mubs for 2, 3, 4 and 5 qubits.

2008 ◽  
Vol 8 (5) ◽  
pp. 386-398
Author(s):  
Y.-T. Chen ◽  
G. Bjork

We address the problem of generation and detection of the four mutually unbiased biphoton polarization-qutrit bases by linear optics. First, the generation of the bases is studied. Our numeric results show that the linear optics method can be used to generate the 4 mutually unbiased basis qutrit states probabilistically with high fidelity. Second, we investigate whether or not linear polarization-optics components are sufficient to realize the simultaneous detection of the qutrit states forming a complete basis. Analytical results show that every state in two of the bases, namely only half of the 4 mutually unbiased bases qutrit states can be identified.


2010 ◽  
Vol 10 (9&10) ◽  
pp. 803-820
Author(s):  
Stephen Brierley ◽  
Stefan Weigert ◽  
Ingemar Bengtsson

All complex Hadamard matrices in dimensions two to five are known. We use this fact to derive all inequivalent sets of mutually unbiased (MU) bases in low dimensions. We find a three-parameter family of triples of MU bases in dimension four and two inequivalent classes of MU triples in dimension five. We confirm that the complete sets of (d+1) MU bases are unique (up to equivalence) in dimensions below six, using only elementary arguments for d less than five.


2021 ◽  
Vol 7 (7) ◽  
pp. eabc3847
Author(s):  
Armin Tavakoli ◽  
Máté Farkas ◽  
Denis Rosset ◽  
Jean-Daniel Bancal ◽  
Jedrzej Kaniewski

Mutually unbiased bases (MUBs) and symmetric informationally complete projectors (SICs) are crucial to many conceptual and practical aspects of quantum theory. Here, we develop their role in quantum nonlocality by (i) introducing families of Bell inequalities that are maximally violated by d-dimensional MUBs and SICs, respectively, (ii) proving device-independent certification of natural operational notions of MUBs and SICs, and (iii) using MUBs and SICs to develop optimal-rate and nearly optimal-rate protocols for device-independent quantum key distribution and device-independent quantum random number generation, respectively. Moreover, we also present the first example of an extremal point of the quantum set of correlations that admits physically inequivalent quantum realizations. Our results elaborately demonstrate the foundational and practical relevance of the two most important discrete Hilbert space structures to the field of quantum nonlocality.


2021 ◽  
Vol 180 ◽  
pp. 105424
Author(s):  
Joshua E. Ducey ◽  
David L. Duncan ◽  
Wesley J. Engelbrecht ◽  
Jawahar V. Madan ◽  
Eric Piato ◽  
...  

Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francisca Carrillo-Morales ◽  
Francisco Correa ◽  
Olaf Lechtenfeld

Abstract For the rational quantum Calogero systems of type A1⊕A2, AD3 and BC3, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra ‘odd’ charges appearing for integral couplings. Formulæ for the energy eigenstates are used to tabulate the low-level wave functions.


Sign in / Sign up

Export Citation Format

Share Document