scholarly journals Simultaneous Contour Method of a Trigonometric Integral by Prudnikov et al.

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1453
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

In this present work we derive, evaluate and produce a table of definite integrals involving logarithmic and exponential functions. Some of the closed form solutions derived are expressed in terms of elementary or transcendental functions. A substantial part of this work is new.

2001 ◽  
Vol 123 (3) ◽  
pp. 401-403 ◽  
Author(s):  
Seong-Wook Hong ◽  
Jong-Heuck Park

Although the exact dynamic elements have been suggested by the authors [1] and proved to be useful for the dynamic analysis of distributed-parameter rotor-bearing systems, difficulty remains in computation because of the presence of transcendental functions in the matrix. This paper proposes a complete analysis scheme for the exact dynamic elements, a generalized modal analysis method, to obtain exact and closed form solutions of time and frequency domain responses for multi-stepped distributed-parameter rotor-bearing systems. A numerical example is provided for validating the proposed method.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1425
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

While browsing through the famous book of Bierens de Haan, we came across a table with some very interesting integrals. These integrals also appeared in the book of Gradshteyn and Ryzhik. Derivation of these integrals are not listed in the current literature to best of our knowledge. The derivation of such integrals in the book of Gradshteyn and Ryzhik in terms of closed form solutions is pertinent. We evaluate several of these definite integrals of the form ∫0∞(a+y)k−(a−y)keby−1dy, ∫0∞(a+y)k−(a−y)keby+1dy, ∫0∞(a+y)k−(a−y)ksinh(by)dy and ∫0∞(a+y)k+(a−y)kcosh(by)dy in terms of a special function where k, a and b are arbitrary complex numbers.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 687 ◽  
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

The derivation of integrals in the table of Gradshteyn and Ryzhik in terms of closed form solutions is always of interest. We evaluate several of these definite integrals of the form ∫ 0 ∞ log ( 1 ± e − α y ) R ( k , a , y ) d y in terms of a special function, where R ( k , a , y ) is a general function and k, a and α are arbitrary complex numbers, where R e ( α ) > 0 .


2018 ◽  
Vol 23 (4) ◽  
pp. 665-685
Author(s):  
Zenonas Navickas ◽  
Tadas Telksnys ◽  
Inga Timofejeva ◽  
Romas Marcinkevičius ◽  
Minvydas Ragulskis

An operator-based approach for the construction of closed-form solutions to fractional differential equations is presented in this paper. The technique is based on the analysis of Caputo and Riemann-Liouville algebras of fractional power series. Explicit solutions to a class of linear fractional differential equations are obtained in terms of Mittag-Leffler and fractionally-integrated exponential functions in order to demonstrate the viability of the proposed technique.


2010 ◽  
Vol E93-B (12) ◽  
pp. 3461-3468 ◽  
Author(s):  
Bing LUO ◽  
Qimei CUI ◽  
Hui WANG ◽  
Xiaofeng TAO ◽  
Ping ZHANG

Sign in / Sign up

Export Citation Format

Share Document