scholarly journals Electromagnetic Devices with Moving Parts—Simulation with FEM/BEM Coupling

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1804
Author(s):  
Thomas Rüberg ◽  
Lars Kielhorn ◽  
Jürgen Zechner

The numerical analysis of electromagnetic devices by means of finite element methods (FEM) is often hindered by the need to incorporate the surrounding domain. The discretisation of the air may become complex and has to be truncated by artificial boundaries incurring a modelling error. Even more problematic are moving parts that require tedious re-meshing and mapping techniques. In this work, we tackle these problems by using the boundary element method (BEM) in conjunction with FEM. Whereas the solid parts of the electrical device are discretised by FEM, which can easily account for material non-linearities, the surrounding domain is represented by BEM, which requires only a surface discretisation. This approach completely avoids an air mesh and its re-meshing during the simulation with moving or deforming parts. Our approach is robust, shows optimal complexity, and provides an accurate calculation of electromagnetic forces that are required to study the mechanical behaviour of the device.

1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Chen Xia ◽  
Chengzhi Qi ◽  
Xiaozhao Li

Transmitting boundaries are important for modeling the wave propagation in the finite element analysis of dynamic foundation problems. In this study, viscoelastic boundaries for multiple seismic waves or excitations sources were derived for two-dimensional and three-dimensional conditions in the time domain, which were proved to be solid by finite element models. Then, the method for equivalent forces’ input of seismic waves was also described when the proposed artificial boundaries were applied. Comparisons between numerical calculations and analytical results validate this seismic excitation input method. The seismic response of subway station under different seismic loads input methods indicates that asymmetric input seismic loads would cause different deformations from the symmetric input seismic loads, and whether it would increase or decrease the seismic response depends on the parameters of the specific structure and surrounding soil.


1993 ◽  
Vol 115 (3) ◽  
pp. 262-267 ◽  
Author(s):  
J. Q. Ye

The postbuckling behavior of thin plates under combined loads is studied in this paper by using a mixed boundary element and finite element method. The transverse and the in-plane deformation of the plates are analyzed by the boundary element method and the finite element method, respectively. Spline functions were used as the interpolation functions and shape functions in the solution of both methods. A quadratic rectangular spline element is adopted in the finite element procedure. Numerical results are given for typical problems to show the effectiveness of the proposed approach. The possibilities to extend the method developed in this paper to more complicated postbuckling problems are discussed in the concluding section.


Sign in / Sign up

Export Citation Format

Share Document