electrical device
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 21 (6) ◽  
pp. 185-190
Author(s):  
Krzysztof Dziarski ◽  
Arkadiusz Hulewicz

Abstract The thermographic temperature measurement is burdened with uncertainty. This non-contact temperature measurement method makes it possible to measure the temperature of the electrical device under load. When the observed object is small (a few square millimeters) the spatial resolution of the thermographic cameras is often insufficient. In this case, the use of the additional macro lens is needed. After using an additional lens, the uncertainty of the thermographic measurement is different from the uncertainty of thermographic measurement without an additional lens. The values of the uncertainty contributions depend on the conditions during the measurement and the used methodology. The authors constructed an uncertainty budget of thermographic temperature measurement with an additional macro lens, based on EA-4/02 (European Accreditation publications). The uncertainty contributions were also calculated. On the basis of the calculated values of the uncertainty contributions, it was determined which factor had the greatest impact on the value of the thermographic temperature measurement with an additional lens.



2021 ◽  
Author(s):  
Hui Lin Chou

<p>The online impedance serves as one of the most crucial specification to evaluate the health status and efficiency of an electrical device or system. The inductive coupling technique is a preferred approach to measure the online impedance due to the ease of implementation of the circuit which has zero physical contact to the live electrical system. The existing inductive coupling method deployed to measure the online impedance of an electrical device under test (DUT) adopts two probes in total: an injecting inductive probe (IIP) and a receiving inductive probe (RIP). An open/short/load (OSL) calibration procedure is implemented to eradicate the ramifications of the probe-to-probe coupling, however, based on the assumption that the calibration criterions (shorted, open and 50Ω) are approximated to their theoretical values in a specified frequency range. Hence, any measurement with frequency outside the specified range (i.e. larger than 1 MHz) will not be accurate due to the frequency-dependent residual inductances and capacitances of the calibration model. To overcome the aforesaid limitation, this paper introduces an improved calibration procedure which is applicable for a wider frequency range which takes the frequency-dependent characteristics into consideration. With the two-probe measurement setup (TPMS), the adopted improved calibration procedure is introduced to eradicate the ramifications of the probe-to-probe coupling with the intention to refine the accuracy of the extracted online impedance.<a></a></p><p></p>



2021 ◽  
Author(s):  
Hui Lin Chou

<p>The online impedance serves as one of the most crucial specification to evaluate the health status and efficiency of an electrical device or system. The inductive coupling technique is a preferred approach to measure the online impedance due to the ease of implementation of the circuit which has zero physical contact to the live electrical system. The existing inductive coupling method deployed to measure the online impedance of an electrical device under test (DUT) adopts two probes in total: an injecting inductive probe (IIP) and a receiving inductive probe (RIP). An open/short/load (OSL) calibration procedure is implemented to eradicate the ramifications of the probe-to-probe coupling, however, based on the assumption that the calibration criterions (shorted, open and 50Ω) are approximated to their theoretical values in a specified frequency range. Hence, any measurement with frequency outside the specified range (i.e. larger than 1 MHz) will not be accurate due to the frequency-dependent residual inductances and capacitances of the calibration model. To overcome the aforesaid limitation, this paper introduces an improved calibration procedure which is applicable for a wider frequency range which takes the frequency-dependent characteristics into consideration. With the two-probe measurement setup (TPMS), the adopted improved calibration procedure is introduced to eradicate the ramifications of the probe-to-probe coupling with the intention to refine the accuracy of the extracted online impedance.<a></a></p><p></p>



2021 ◽  
Vol 3 (9) ◽  
pp. 488-496
Author(s):  
Yasuo Miyagi ◽  
Shun-ichiro Sakamoto ◽  
Yasuhiro Kawase ◽  
Hiroya Oomori ◽  
Yoshiyuki Watanabe ◽  
...  


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2159
Author(s):  
María José Ibáñez ◽  
Domingo Barrera ◽  
David Maldonado ◽  
Rafael Yáñez ◽  
Juan Bautista Roldán

An advanced new methodology is presented to improve parameter extraction in resistive memories. The series resistance and some other parameters in resistive memories are obtained, making use of a two-stage algorithm, where the second one is based on quasi-interpolation on non-uniform partitions. The use of this latter advanced mathematical technique provides a numerically robust procedure, and in this manuscript, we focus on it. The series resistance, an essential parameter to characterize the circuit operation of resistive memories, is extracted from experimental curves measured in devices based on hafnium oxide as their dielectric layer. The experimental curves are highly non-linear, due to the underlying physics controlling the device operation, so that a stable numerical procedure is needed. The results also allow promising expectations in the massive extraction of new parameters that can help in the characterization of the electrical device behavior.



Author(s):  
Saurabh Singh Rajawat ◽  
Abdul Basit ◽  
Himdweep Walia ◽  
Komal Saxena ◽  
Ajay Rana


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1804
Author(s):  
Thomas Rüberg ◽  
Lars Kielhorn ◽  
Jürgen Zechner

The numerical analysis of electromagnetic devices by means of finite element methods (FEM) is often hindered by the need to incorporate the surrounding domain. The discretisation of the air may become complex and has to be truncated by artificial boundaries incurring a modelling error. Even more problematic are moving parts that require tedious re-meshing and mapping techniques. In this work, we tackle these problems by using the boundary element method (BEM) in conjunction with FEM. Whereas the solid parts of the electrical device are discretised by FEM, which can easily account for material non-linearities, the surrounding domain is represented by BEM, which requires only a surface discretisation. This approach completely avoids an air mesh and its re-meshing during the simulation with moving or deforming parts. Our approach is robust, shows optimal complexity, and provides an accurate calculation of electromagnetic forces that are required to study the mechanical behaviour of the device.



2021 ◽  
Author(s):  
Aurel Stefan Pica ◽  
Veronica Dulea


2021 ◽  
Vol 60 (12) ◽  
pp. 1813-1818
Author(s):  
Yukitoshi Ikeya ◽  
Toshiko Nakai ◽  
Rikitake Kogawa ◽  
Sayaka Kurokawa ◽  
Koichi Nagashima ◽  
...  


Author(s):  
Tatum, R. Maynes ◽  
EJ. Wood ◽  
C. Deb ◽  
A. Austin ◽  
M. O'Malley ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document