scholarly journals Sojourn Times in A Queueing System with Breakdowns and General Retrial Times

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2882
Author(s):  
Ivan Atencia ◽  
José Luis Galán-García

This paper centers on a discrete-time retrial queue where the server experiences breakdowns and repairs when arriving customers may opt to follow a discipline of a last-come, first-served (LCFS)-type or to join the orbit. We focused on the extensive analysis of the system, and we obtained the stationary distributions of the number of customers in the orbit and in the system by applying the generation function (GF). We provide the stochastic decomposition law and the application bounds for the proximity between the steady-state distributions for the queueing system under consideration and its corresponding standard system. We developed recursive formulae aimed at the calculation of the steady-state of the orbit and the system. We proved that our discrete-time system approximates M/G/1 with breakdowns and repairs. We analyzed the busy period of an auxiliary system, the objective of which was to study the customer’s delay. The stationary distribution of a customer’s sojourn in the orbit and in the system was the object of a thorough and complete study. Finally, we provide numerical examples that outline the effect of the parameters on several performance characteristics and a conclusions section resuming the main research contributions of the paper.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Zhang ◽  
Zhifeng Zhu

We analyze a discrete-timeGeo/G/1 retrial queue with two different types of vacations and general retrial times. Two different types of vacation policies are investigated in this model, one of which is nonexhaustive urgent vacation during serving and the other is normal exhaustive vacation. For this model, we give the steady-state analysis for the considered queueing system. Firstly, we obtain the generating functions of the number of customers in our model. Then, we obtain the closed-form expressions of some performance measures and also give a stochastic decomposition result for the system size. Moreover, the relationship between this discrete-time model and the corresponding continuous-time model is also investigated. Finally, some numerical results are provided to illustrate the effect of nonexhaustive urgent vacation on some performance characteristics of the system.


2006 ◽  
Vol 23 (02) ◽  
pp. 247-271 ◽  
Author(s):  
IVAN ATENCIA ◽  
PILAR MORENO

This paper discusses a discrete-time Geo/G/1 retrial queue with the server subject to breakdowns and repairs. The customer just being served before server breakdown completes his remaining service when the server is fixed. The server lifetimes are assumed to be geometrical and the server repair times are arbitrarily distributed. We study the Markov chain underlying the considered queueing system and present its stability condition as well as some performance measures of the system in steady-state. Then, we derive a stochastic decomposition law and as an application we give bounds for the proximity between the steady-state distributions of our system and the corresponding system without retrials. Also, we introduce the concept of generalized service time and develop a recursive procedure to obtain the steady-state distributions of the orbit and system size. Finally, we prove the convergence to the continuous-time counterpart and show some numerical results.


2014 ◽  
Vol 513-517 ◽  
pp. 806-811
Author(s):  
Ivan Atencia ◽  
Inmaculada Fortes ◽  
Sixto Sánchez

In this paper we analyze a discrete-time queueing system where the server decides whento upgrade the service depending on the information carried by the incoming message. We carry outan extensive analysis of the system developing recursive formulae and generating functions for thestationary distribution of the number of customers in the queue, the system, the busy period and thesojourntimeas well as some numerical examples.


2014 ◽  
Vol 24 (3) ◽  
pp. 471-484 ◽  
Author(s):  
Ivan Atencia

Abstract This paper discusses a discrete-time queueing system with starting failures in which an arriving customer follows three different strategies. Two of them correspond to the LCFS (Last Come First Served) discipline, in which displacements or expulsions of customers occur. The third strategy acts as a signal, that is, it becomes a negative customer. Also examined is the possibility of failures at each service commencement epoch. We carry out a thorough study of the model, deriving analytical results for the stationary distribution. We obtain the generating functions of the number of customers in the queue and in the system. The generating functions of the busy period as well as the sojourn times of a customer at the server, in the queue and in the system, are also provided. We present the main performance measures of the model. The versatility of this model allows us to mention several special cases of interest. Finally, we prove the convergence to the continuous-time counterpart and give some numerical results that show the behavior of some performance measures with respect to the most significant parameters of the system


2011 ◽  
Vol 2 (4) ◽  
pp. 75-88
Author(s):  
Veena Goswami ◽  
G. B. Mund

This paper analyzes a discrete-time infinite-buffer Geo/Geo/2 queue, in which the number of servers can be adjusted depending on the number of customers in the system one at a time at arrival or at service completion epoch. Analytical closed-form solutions of the infinite-buffer Geo/Geo/2 queueing system operating under the triadic (0, Q N, M) policy are derived. The total expected cost function is developed to obtain the optimal operating (0, Q N, M) policy and the optimal service rate at minimum cost using direct search method. Some performance measures and sensitivity analysis have been presented.


1995 ◽  
Vol 8 (2) ◽  
pp. 151-176 ◽  
Author(s):  
Attahiru Sule Alfa ◽  
K. Laurie Dolhun ◽  
S. Chakravarthy

We consider a single-server discrete queueing system in which arrivals occur according to a Markovian arrival process. Service is provided in groups of size no more than M customers. The service times are assumed to follow a discrete phase type distribution, whose representation may depend on the group size. Under a probabilistic service rule, which depends on the number of customers waiting in the queue, this system is studied as a Markov process. This type of queueing system is encountered in the operations of an automatic storage retrieval system. The steady-state probability vector is shown to be of (modified) matrix-geometric type. Efficient algorithmic procedures for the computation of the rate matrix, steady-state probability vector, and some important system performance measures are developed. The steady-state waiting time distribution is derived explicitly. Some numerical examples are presented.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 758
Author(s):  
P. Rajadurai ◽  
R. Santhoshi ◽  
G. Pavithra ◽  
S. Usharani ◽  
S. B. Shylaja

A multi phase retrial queue with optional re-service and multiple working vacations is considered. The Probability Generating Function (PGF) of number of customers in the system is obtained by supplementary variable technique. Various system performance measures are discussed. 


1990 ◽  
Vol 27 (02) ◽  
pp. 425-432
Author(s):  
Hahn-Kyou Rhee ◽  
B. D. Sivazlian

We consider an M/M/2 queueing system with removable service stations operating under steady-state conditions. We assume that the number of operating service stations can be adjusted at customers' arrival or service completion epochs depending on the number of customers in the system. The objective of this paper is to obtain the distribution of the busy period using the theory of the gambler's ruin problem. As special cases, the distributions of the busy periods for the ordinary M/M/2 queueing system, the M/M/1 queueing system operating under the N policy and the ordinary M/M/1 queueing system are obtained.


2015 ◽  
Vol 32 (06) ◽  
pp. 1550046
Author(s):  
Dmitry Efrosinin ◽  
Anastasia Winkler ◽  
Pinzger Martin

We consider the problem of estimation and confidence interval construction of a Markovian controllable queueing system with unreliable server and constant retrial policy. For the fully observable system the standard parametric estimation technique is used. The arrived customer finding a free server either gets service immediately or joins a retrial queue. The customer at the head of the retrial queue is allowed to retry for service. When the server is busy, it is subject to breakdowns. In a failed state the server can be repaired with respect to the threshold policy: the repair starts when the number of customers in the system reaches a fixed threshold level. To obtain the estimates for the system parameters, performance measures and optimal threshold level we analyze the system in a stationary regime. The performance measures including average cost function for the given cost structure are presented in a closed matrix form.


Sign in / Sign up

Export Citation Format

Share Document