A Discrete-Time Queueing Model with Service Upgrade

2014 ◽  
Vol 513-517 ◽  
pp. 806-811
Author(s):  
Ivan Atencia ◽  
Inmaculada Fortes ◽  
Sixto Sánchez

In this paper we analyze a discrete-time queueing system where the server decides whento upgrade the service depending on the information carried by the incoming message. We carry outan extensive analysis of the system developing recursive formulae and generating functions for thestationary distribution of the number of customers in the queue, the system, the busy period and thesojourntimeas well as some numerical examples.

2016 ◽  
Vol 26 (2) ◽  
pp. 379-390 ◽  
Author(s):  
Ivan Atencia

Abstract This paper considers a discrete-time queueing system in which an arriving customer can decide to follow a last come first served (LCFS) service discipline or to become a negative customer that eliminates the one at service, if any. After service completion, the server can opt for a vacation time or it can remain on duty. Changes in the vacation times as well as their associated distribution are thoroughly studied. An extensive analysis of the system is carried out and, using a probability generating function approach, steady-state performance measures such as the first moments of the busy period of the queue content and of customers delay are obtained. Finally, some numerical examples to show the influence of the parameters on several performance characteristics are given.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2882
Author(s):  
Ivan Atencia ◽  
José Luis Galán-García

This paper centers on a discrete-time retrial queue where the server experiences breakdowns and repairs when arriving customers may opt to follow a discipline of a last-come, first-served (LCFS)-type or to join the orbit. We focused on the extensive analysis of the system, and we obtained the stationary distributions of the number of customers in the orbit and in the system by applying the generation function (GF). We provide the stochastic decomposition law and the application bounds for the proximity between the steady-state distributions for the queueing system under consideration and its corresponding standard system. We developed recursive formulae aimed at the calculation of the steady-state of the orbit and the system. We proved that our discrete-time system approximates M/G/1 with breakdowns and repairs. We analyzed the busy period of an auxiliary system, the objective of which was to study the customer’s delay. The stationary distribution of a customer’s sojourn in the orbit and in the system was the object of a thorough and complete study. Finally, we provide numerical examples that outline the effect of the parameters on several performance characteristics and a conclusions section resuming the main research contributions of the paper.


2014 ◽  
Vol 24 (3) ◽  
pp. 471-484 ◽  
Author(s):  
Ivan Atencia

Abstract This paper discusses a discrete-time queueing system with starting failures in which an arriving customer follows three different strategies. Two of them correspond to the LCFS (Last Come First Served) discipline, in which displacements or expulsions of customers occur. The third strategy acts as a signal, that is, it becomes a negative customer. Also examined is the possibility of failures at each service commencement epoch. We carry out a thorough study of the model, deriving analytical results for the stationary distribution. We obtain the generating functions of the number of customers in the queue and in the system. The generating functions of the busy period as well as the sojourn times of a customer at the server, in the queue and in the system, are also provided. We present the main performance measures of the model. The versatility of this model allows us to mention several special cases of interest. Finally, we prove the convergence to the continuous-time counterpart and give some numerical results that show the behavior of some performance measures with respect to the most significant parameters of the system


1994 ◽  
Vol 31 (A) ◽  
pp. 115-129 ◽  
Author(s):  
W. Böhm ◽  
S. G. Mohanty

In this contribution we consider an M/M/1 queueing model with general server vacations. Transient and steady state analysis are carried out in discrete time by combinatorial methods. Using weak convergence of discrete-parameter Markov chains we also obtain formulas for the corresponding continuous-time queueing model. As a special case we discuss briefly a queueing system with a T-policy operating.


Author(s):  
S. Shanmugasundaram, Et. al.

In this paper we study the M/M/1 queueing model with retrial on network. We derive the steady state probability of customers in the network, the average number of customers in the all the three nodes in the system, the queue length, system length using little’s formula. The particular case is derived (no retrial). The numerical examples are given to test the correctness of the model.


2021 ◽  
pp. 2150001
Author(s):  
Kai Yao

In the queueing theory, the interarrival times between customers and the service times for customers are usually regarded as random variables. This paper considers human uncertainty in a queueing system, and proposes an uncertain queueing model in which the interarrival times and the service times are regarded as uncertain variables. The busyness index is derived analytically which indicates the service efficiency of a queueing system. Besides, the uncertainty distribution of the busy period is obtained.


2011 ◽  
Vol 2 (4) ◽  
pp. 75-88
Author(s):  
Veena Goswami ◽  
G. B. Mund

This paper analyzes a discrete-time infinite-buffer Geo/Geo/2 queue, in which the number of servers can be adjusted depending on the number of customers in the system one at a time at arrival or at service completion epoch. Analytical closed-form solutions of the infinite-buffer Geo/Geo/2 queueing system operating under the triadic (0, Q N, M) policy are derived. The total expected cost function is developed to obtain the optimal operating (0, Q N, M) policy and the optimal service rate at minimum cost using direct search method. Some performance measures and sensitivity analysis have been presented.


1969 ◽  
Vol 6 (1) ◽  
pp. 154-161 ◽  
Author(s):  
E.G. Enns

In the study of the busy period for a single server queueing system, three variables that have been investigated individually or at most in pairs are:1.The duration of the busy period.2.The number of customers served during the busy period.3.The maximum number of customers in the queue during the busy period.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Zhang ◽  
Zhifeng Zhu

We analyze a discrete-timeGeo/G/1 retrial queue with two different types of vacations and general retrial times. Two different types of vacation policies are investigated in this model, one of which is nonexhaustive urgent vacation during serving and the other is normal exhaustive vacation. For this model, we give the steady-state analysis for the considered queueing system. Firstly, we obtain the generating functions of the number of customers in our model. Then, we obtain the closed-form expressions of some performance measures and also give a stochastic decomposition result for the system size. Moreover, the relationship between this discrete-time model and the corresponding continuous-time model is also investigated. Finally, some numerical results are provided to illustrate the effect of nonexhaustive urgent vacation on some performance characteristics of the system.


2008 ◽  
Vol 23 (1) ◽  
pp. 75-99 ◽  
Author(s):  
Antonis Economou ◽  
Stella Kapodistria

We consider a single-server Markovian queue with synchronized services and setup times. The customers arrive according to a Poisson process and are served simultaneously. The service times are independent and exponentially distributed. At a service completion epoch, every customer remains satisfied with probability p (independently of the others) and departs from the system; otherwise, he stays for a new service. Moreover, the server takes multiple vacations whenever the system is empty.Some of the transition rates of the underlying two-dimensional Markov chain involve binomial coefficients dependent on the number of customers. Indeed, at each service completion epoch, the number of customers n is reduced according to a binomial (n, p) distribution. We show that the model can be efficiently studied using the framework of q-hypergeometric series and we carry out an extensive analysis including the stationary, the busy period, and the sojourn time distributions. Exact formulas and numerical results show the effect of the level of synchronization to the performance of such systems.


Sign in / Sign up

Export Citation Format

Share Document