scholarly journals Predicate-Based Model of Problem-Solving for Robotic Actions Planning

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3044
Author(s):  
Oleksandr Tsymbal ◽  
Paolo Mercorelli ◽  
Oleg Sergiyenko

The aim of the article is to describe a predicate-based logical model for the problem-solving of robots. The proposed article deals with analyses of trends of problem-solving robotic applications for manufacturing, especially for transportations and manipulations. Intelligent agent-based manufacturing systems with robotic agents are observed. The intelligent cores of them are considered from point of view of ability to propose the plans of problem-solving in the form of strategies. The logical model of adaptive strategies planning for the intelligent robotic system is composed in the form of predicates with a presentation of data processing on a base of set theory. The dynamic structures of workspaces, and a possible change of goals are considered as reasons for functional strategies adaptation.

Author(s):  
Oleksandr Tsymbal ◽  
Paolo Mercorelli

Proposed article deals with analyses on trends of problem-solving robotic applications in manu-facturing, especially in transportations and manipulations. Intelligent agent-based manufacturing systems with robotic agents are observed. Intelligent core of such units must be able to propose the plan of problem-solving in form of strategy. The logical model of adaptive strategies planning for intelligent robotic system is described in form of predicates with presentation of data processing on base of set theory descriptions. Dynamic structure of workspace and possible change of goals are considered as reasons for functional strategies adaptation. Proposed formal descriptions are sup-ported by model of mobile robotic platform, acting in warehouse.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 681
Author(s):  
László Barna Iantovics

Current machine intelligence metrics rely on a different philosophy, hindering their effective comparison. There is no standardization of what is machine intelligence and what should be measured to quantify it. In this study, we investigate the measurement of intelligence from the viewpoint of real-life difficult-problem-solving abilities, and we highlight the importance of being able to make accurate and robust comparisons between multiple cooperative multiagent systems (CMASs) using a novel metric. A recent metric presented in the scientific literature, called MetrIntPair, is capable of comparing the intelligence of only two CMASs at an application. In this paper, we propose a generalization of that metric called MetrIntPairII. MetrIntPairII is based on pairwise problem-solving intelligence comparisons (for the same problem, the problem-solving intelligence of the studied CMASs is evaluated experimentally in pairs). The pairwise intelligence comparison is proposed to decrease the necessary number of experimental intelligence measurements. MetrIntPairII has the same properties as MetrIntPair, with the main advantage that it can be applied to any number of CMASs conserving the accuracy of the comparison, while it exhibits enhanced robustness. An important property of the proposed metric is the universality, as it can be applied as a black-box method to intelligent agent-based systems (IABSs) generally, not depending on the aspect of IABS architecture. To demonstrate the effectiveness of the MetrIntPairII metric, we provide a representative experimental study, comparing the intelligence of several CMASs composed of agents specialized in solving an NP-hard problem.


1991 ◽  
Vol 56 (3) ◽  
pp. 505-559 ◽  
Author(s):  
Karel Eckschlager

In this review, analysis is treated as a process of gaining information on chemical composition, taking place in a stochastic system. A model of this system is outlined, and a survey of measures and methods of information theory is presented to an extent as useful for qualitative or identification, quantitative and trace analysis and multicomponent analysis. It is differentiated between information content of an analytical signal and information gain, or amount of information, obtained by the analysis, and their interrelation is demonstrated. Some notions of analytical chemistry are quantified from the information theory and system theory point of view; it is also demonstrated that the use of fuzzy set theory can be suitable. The review sums up the principal results of the series of 25 papers which have been published in this journal since 1971.


2011 ◽  
Vol 2-3 ◽  
pp. 608-613
Author(s):  
Ying Zi Wei ◽  
Yi Jun Feng ◽  
Kan Feng Gu

This paper builds an efficient agent-based flexible scheduling for real-world manufacturing systems. Considering the alternative processes and alternative machines, the allocation of manufacturing resources is achieved through negotiation among the job and machine agents in a multi-agent system (MAS). Ant Colony Intelligence (ACI) is proposed to be combined with Contract Net Protocol (CNP) so as to make agents adaptive to changing circumstances. ACI is integrated into both machine agents and job agents to solve the task allocation and sequencing problem. CNP is introduced to allow the agents to cooperate and coordinate their local schedules in order to find globally near-optimal robust schedules. The negotiation protocol is an interactive bidding mechanism based on the hybrid contract net protocol. The implementation of the issues using CNP model is discussed. Experimental results verify the effectiveness and efficiency of the proposed algorithm integrated with ant-inspired coordination.


2009 ◽  
Vol 36 (2) ◽  
pp. 3167-3187 ◽  
Author(s):  
Francisco García-Sánchez ◽  
Rafael Valencia-García ◽  
Rodrigo Martínez-Béjar ◽  
Jesualdo T. Fernández-Breis

2021 ◽  
pp. 1-24
Author(s):  
Lijun Chen ◽  
Damei Luo ◽  
Pei Wang ◽  
Zhaowen Li ◽  
Ningxin Xie

 An approximation space (A-space) is the base of rough set theory and a fuzzy approximation space (FA-space) can be seen as an A-space under the fuzzy environment. A fuzzy probability approximation space (FPA-space) is obtained by putting probability distribution into an FA-space. In this way, it combines three types of uncertainty (i.e., fuzziness, probability and roughness). This article is devoted to measuring the uncertainty for an FPA-space. A fuzzy relation matrix is first proposed by introducing the probability into a given fuzzy relation matrix, and on this basis, it is expanded to an FA-space. Then, granularity measurement for an FPA-space is investigated. Next, information entropy measurement and rough entropy measurement for an FPA-space are proposed. Moreover, information amount in an FPA-space is considered. Finally, a numerical example is given to verify the feasibility of the proposed measures, and the effectiveness analysis is carried out from the point of view of statistics. Since three types of important theories (i.e., fuzzy set theory, probability theory and rough set theory) are clustered in an FPA-space, the obtained results may be useful for dealing with practice problems with a sort of uncertainty.


Sign in / Sign up

Export Citation Format

Share Document