scholarly journals Ciguatera in Mexico (1984–2013)

Marine Drugs ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 13 ◽  
Author(s):  
Erick Núñez-Vázquez ◽  
Antonio Almazán-Becerril ◽  
David López-Cortés ◽  
Alejandra Heredia-Tapia ◽  
Francisco Hernández-Sandoval ◽  
...  

Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
P. K. Bienfang ◽  
S. V. DeFelice ◽  
E. A. Laws ◽  
L. E. Brand ◽  
R. R. Bidigare ◽  
...  

This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscusspp.,Karenia brevis, andAlexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus,Salmonella,Campylobacter,Shigella,Staphylococcus aureus,Cryptosporidium, andGiardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment.


2014 ◽  
Vol 97 (2) ◽  
pp. 492-497 ◽  
Author(s):  
Andrew D Turner ◽  
Monika Dhanji-Rapkova ◽  
Clothilde Baker ◽  
Myriam Algoet

Abstract AOAC Official Method 2005.06 precolumn oxidation LC-fluorescence detection method has been used for many years for the detection and quantitation of paralytic shellfish poisoning (PSP) toxins in bivalve molluscs. After extensive single- and multiple-laboratory validation, the method has been slowly gaining acceptance worldwide as a useful and practical tool for official control testing. In Great Britain, the method has become routine since 2008, with no requirement since then for reverting back to the bioassay reference method. Although the method has been refined to be semiautomated, faster, and more reproducible, the quantitation step can be complex and time-consuming. An alternative approach was developed to utilize the qualitative screening results for generatinga semiquantitative results assessment. Data obtained over 5 years enabled the comparison of semiquantitative and fully quantitative PSP results in over 15 000 shellfish samples comprising eight different species showed that the semiquantitative approach resulted in over-estimated paralytic shellfish toxin levels by an average factor close to two in comparison with the fully quantified levels. No temporal trends were observed in the data or relating to species type, with the exception of surf clams. The comparison suggested a semiquantitative threshold of 800 μg saxitoxin (STX) eq/kg should provide a safe limitfor the determination of samples to be forwarded to full quantitation. However, the decision was taken to halve this limit to include an additional safety factor of 2, resulting in the use of a semiquantitative threshold of 400 μg STX eq/kg. Implementation of the semiquantitative method into routine testing would result in a significant reduction in the numbers of samples requiring quantitation and have a positive impact on the overall turnaround of reported PSP results. The refined method would be appropriate for any monitoring laboratory faced with high throughput requirements.


Sign in / Sign up

Export Citation Format

Share Document